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Unsupervised Learning
and Dimensionality Reduction

Kirsten Odendaal

I. INTRODUCTION

Clustering and dimensionality reduction are key tech-
niques in data analysis and machine learning for simpli-
fying and interpreting complex datasets. Clustering with
methods like K-Means and Gaussian Mixture Models
(GMM) groups similar objects to uncover inherent struc-
tures. Dimensionality reduction, using techniques such
as Principal Component Analysis (PCA), Independent
Component Analysis (ICA), and random projection (RP),
reduces the number of variables while preserving es-
sential data characteristics. These methods enhance data
visualization, reduce computational costs, and improve
model efficiency. We assess these methods using two
challenging datasets from Kaggle: the NASA Near-Earth
Objects (NEO) and Wine Quality datasets.
A. Dataset Introductions:

The NASA NEO dataset [6] contains 4,687 instances
and 17 features related to asteroid characteristics, such as
size and orbit. The target feature, ”Hazardous,” indicates
whether an asteroid poses a potential threat to Earth.
This dataset is challenging due to its varied features
and class imbalance, with significant implications for
planetary defence and risk assessment. The Wine Qual-
ity dataset [7] includes 1,143 instances and 11 features
related to the physico-chemical properties of Portuguese
’Vinho Verde’ wine. It aims to classify wine quality,
scored from 3 (poor) to 8 (excellent), based on attributes
like acidity and pH levels. This dataset is challenging
due to its multi-class nature, class imbalance, and the
subjective aspect of wine quality evaluation, which in-
troduces noise and complicates model convergence.
B. Initial Hypothesis:

The general hypothesis (H) of the study is as follows;
• Clustering Methods: K-Means is expected to perform

efficiently in terms of computational speed due to
its relatively simple iterative process. However, its
performance in identifying clusters may be lim-
ited in datasets with non-spherical cluster shapes
or varying cluster densities. GMM, leveraging the
Expectation-Maximization algorithm, is anticipated
to better capture complex cluster structures, espe-
cially in datasets where clusters have different co-
variance structures. This added flexibility may come
at the cost of increased computational complexity
and time.

• Dimensionality Reduction Methods: PCA is likely to
perform well in preserving the overall variance and
structure of the data, facilitating improved visual-
ization and potentially enhancing neural network

training by reducing noise and overfitting. By fo-
cusing on maximizing statistical independence, ICA
may excel in separating underlying factors in the
data. Its performance might be dataset-dependent,
especially in the presence of Gaussian noise. RP, be-
ing a computationally efficient method, is expected
to provide significant speed advantages, especially
with large datasets. While RP may not preserve the
exact structure as effectively as PCA or ICA, it is hy-
pothesized that it will maintain sufficient structure
to support effective neural network training.
II. CLUSTERING AND DIMENSION REDUCTION

Clustering and dimensionality reduction algorithms
are essential tools in data analysis and machine learning,
designed to simplify and interpret complex datasets.
Clustering algorithms, such as K-Means and Gaussian
Mixture Models (GMM), operate by grouping data
points into clusters based on similarity, thus uncov-
ering the underlying structure within the data. Di-
mensionality reduction algorithms, including Principal
Component Analysis (PCA), Independent Component
Analysis (ICA), and random projection, transform high-
dimensional data into a lower-dimensional space, pre-
serving significant features and patterns. These algo-
rithmic approaches enhance data visualization, reduce
computational complexity, and address the challenges
posed by high-dimensional data, thereby improving the
efficiency and interpretability of analytical models.
A. Clustering:

1) k-Means: K-Means is a partitioning clustering tech-
nique that aims to divide a set of n observations into
clusters, where each observation belongs to the cluster
with the nearest mean. The algorithm iteratively refines
the cluster centroids to minimize the within-cluster sum
of squares (Inertia), the sum-of-squared-distances be-
tween each point and its assigned cluster centroid [9]. K-
Means is computationally efficient and scalable but may
converge to local minima, making the initialization step
critical for performance.

2) Expectation-Maximization (EM): The EM algorithm
finds maximum likelihood estimates of parameters in
probabilistic models with latent variables. When applied
to clustering, it often employs GMMs, where data is
assumed to be generated from a mixture of several Gaus-
sian distributions with unknown parameters. The EM
algorithm iteratively calculates probabilities of belonging
to clusters, then updates statistics to maximize log-
likelihood [9]. Due to their probabilistic nature, GMMs
can model more complex cluster shapes than K-Means
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and are particularly useful when clusters have different
covariance structures.

B. Dimensional Reduction:

1) Principle Component Analysis (PCA): PCA is a linear
dimensionality reduction method that transforms the
data to a new coordinate system where the greatest vari-
ances by any data projection lie on the first coordinates
(called principal components). PCA reduces dimension-
ality by projecting the data onto this new subspace,
capturing most of the variance with fewer dimensions,
which aids in visualization and reduces computational
complexity.

2) Independent Component Analysis (ICA): ICA is a
technque for separating a multivariate signal into in-
dependent components. It is commonly used for blind
source separation. The ICA model assumes the observed
data is a linear mixture of independent non-Gaussian
signals. ICA is beneficial in applications where the goal
is to find underlying factors or sources from observed
mixtures, such as signal processing or neuroscience.

3) Random Projection (RP): RP is an method for re-
ducing the dimensionality of data by projecting it
onto a lower subspace using a random matrix. Ac-
cording to the Johnson-Lindenstrauss lemma [3], high-
dimensional data can be projected into a much lower-
dimensional space while approximately preserving pair-
wise distances. Random Projection is computationally ef-
ficient and can achieve significant dimensionality reduc-
tion while maintaining the data’s geometric structure,
making it suitable for large-scale and high-dimensional
datasets.

C. Performance Metrics:

Evaluating the performance of clustering and dimen-
sionality reduction techniques is important for ensuring
the effectiveness and reliability of the applied methods.
For clustering methods, such metrics quantify how well
the algorithm groups similar data points together while
distinguishing between groups. For dimensionality re-
duction techniques, performance metrics assess how ef-
fectively the method reduces the data’s dimensionality
while preserving its essential structure and variability.

1) Clustering: Inertia: Also known as the within-cluster
sum of squares (WCSS), it measures how internally
coherent the clusters are. It is calculated as the sum of the
squared distances between each point and the centroid of
its assigned cluster. Lower values of inertia indicate more
compact clusters [3], [9]. However, inertia decreases as
the number of clusters increases, making it less helpful
in determining the optimal number of clusters.

Inertia =
k

∑
i=1

∑
x∈Ci

∥x − µi∥2 (1)

where k is the number of clusters, Ci is the set of points
in cluster i, and µi is the centroid of cluster i.

2) Clustering: Silhouette Score: Measures how similar
an object is to its cluster compared to others. It ranges
from -1 to 1, where a value close to 1 indicates that the
object is well-matched to its cluster and poorly matched
to neighbouring clusters [3]. The silhouette score is cal-
culated as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2)

where a(i) is the average distance between i and all
other points in the same cluster, and b(i) is the minimum
average distance from i to points in a different cluster.
The overall silhouette score is the s(i) mean for all points.

3) Clustering: Bayesian Information Criterion (BIC):
Used for model selection among a finite set of models.
In clustering, particularly with Gaussian Mixture Models
(GMMs), BIC can determine the number of clusters by
balancing model fit and complexity [3]. It is defined as:

BIC = −2 ln(L) + p ln(n) (3)

where L is the maximized value of the likelihood func-
tion for the model, p is the number of parameters in the
model, and n is the number of data points. Lower BIC
values indicate better models.

4) Dim. Reduction: Explained Variance: Measures the
proportion of the dataset’s variance captured by the prin-
cipal components in PCA. It is used to determine how
many components to retain [3]. The explained variance
ratio for each principal component is given by:

Explained Variance Ratio =
λi

∑
p
j=1 λj

(4)

where λi is the eigenvalue of the ith principle component
and p is the total number of components.

5) Dim. Reduction: Kurtosis: Measures the ”tailedness”
of the probability distribution of a real-valued random
variable. In the context of ICA, high kurtosis indicates
non-Gaussianity and is used to assess the quality of the
extracted components [4]. Kurtosis for a variable X is
defined as:

Kurtosis =
E[(X − µ)4]

(E[(X − µ)2])2 − 3 (5)

where µ is the mean of X and E denotes the ex-
pectation operator. ICA aims to maximize kurtosis (or
other measures of non-Gaussianity) to find independent
components.

6) Dim. Reduction: Distortion: The distortion metric is
derived from the Johnson-Lindenstrauss Lemma (JLL)
and measures the maximum relative error in the pair-
wise distances between the original and the projected
data points. The JLL states that a small set of points in
high-dimensional space can be embedded into a lower-
dimensional space such that the distances between the
points are nearly preserved [3]. The distortion D can be
computed as:

Distortion = max
i ̸=j

∣∣∣∣∣ ∥ f (xi)− f (xj)∥2

∥xi − xj∥2 − 1

∣∣∣∣∣ (6)

where f is the mapping function defined by the random
projection that transforms the original points into the
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(a) NASA: k-Means (b) Wine: k-Means

(c) NASA: GMM (d) Wine: GMM

Fig. 1: Clustering analysis for optimal k selection using
(Blue) Silhouette score, (Green) Interia, and (Red) BIC.

lower-dimensional space. A lower distortion indicates
better preservation of the original distances.

7) Dim. Reduction: Reconstruction Error: Measures the
loss of information when data is projected onto a lower-
dimensional subspace and then reconstructed back to
the original space. It is particularly used in PCA and
random projection. For PCA, the reconstruction error
is the sum of squared differences between original and
reconstructed data:

Reconstruction Error = ∥X − X̂∥2
F (7)

where X is the original data matrix, X̂ is the recon-
structed data matrix, and ∥·∥F denotes the Frobenius
norm.

III. CLUSTERING ANALYSIS

This analysis investigates the performance of k-means
and Gaussian Mixture Models (GMM) clustering on two
datasets, NASA’s close approach and Wine classification.
The inertia and silhouette metrics for k-means and the
silhouette and Bayesian Information Criterion (BIC) for
GMM are examined. The results are shown in the Fig-
ure 1.

A. k-Means (KM) Analysis
For the NASA dataset, the inertia metric decreases

steadily with increasing clusters, showing an ’elbow’ at 6
clusters, although without a clear plateau. The silhouette
score peaks at 2 clusters, suggesting this is the optimal
number aligning with the dataset’s true structure. In
contrast, the Wine dataset exhibits a less distinct elbow
in the inertia metric, complicating optimal cluster iden-
tification. The silhouette score peaks at 2 clusters, but
notable interest around 6-7 clusters (second strong peak)
corresponds closely with the true cluster count, indicat-
ing uncertainty that warrants further investigation.

B. Gaussian Mixture Model (GMM) Analysis
The silhouette score peaks at 2 clusters in the NASA

dataset, aligning well with the dataset’s true structure.
However, the BIC metric shows decreasing trends with

increasing clusters, indicating potential overfitting due to
data noise, which limits its suitability for optimal cluster
determination. In the Wine dataset, the silhouette score
peaks at 2 clusters, with a secondary peak around 6 clus-
ters closer to the true structure. The BIC metric indicates
a minimum of around 4 clusters, with a gradient plateau
observed at ∼5 clusters, providing nuanced insights into
the optimal cluster count estimation.

Dataset characteristics and the chosen clustering al-
gorithms influence the clusters obtained. The k-means
algorithm minimizes within-cluster variance, resulting in
spherical clusters, while GMM assumes data points are
from a mixture of Gaussian distributions, allowing for
varied cluster shapes. The clusters reflect the underly-
ing data distributions and algorithm objectives. In the
NASA dataset, the clusters align well with the inherent
structure, as indicated by silhouette scores. The Wine
dataset’s main silhouette score peak does not match
the true labels, but secondary peaks offer meaningful
insights. Although clustering algorithms aim to find
inherent data groupings, noise and dataset complexity
can hinder perfect alignment. The NASA dataset clusters
align well due to distinct separations, whereas the Wine
dataset’s complexity leads to varied results. This analysis
highlights the importance of using multiple metrics and
careful interpretation to determine the optimal number
of clusters, especially with noisy and complex datasets.
Future improvements could involve better k-means ini-
tialization algorithms [9] to improve cluster quality and
GMM regularization to prevent overfitting and enhance
model robustness.

IV. DIMENSION REDUCTION ANALYSIS

This analysis examines the performance and outcomes
of PCA, ICA, and RP dimensionality reduction in the
NASA and Wine datasets. The optimal number of com-
ponents is assessed using Explained Variance, Kurtosis,
and Distortion for each method, respectively. The recon-
struction error for each is also inspected. The results are
shown in the Figure 2. Note that a consistent reconstruc-
tion error threshold of 0.15 is considered for a baseline
comparison.

A. Principal Component Analysis
For the NASA dataset, PCA reduces the original 17

features to 10 components while retaining 95% of the
explained variance, significantly improving efficiency.
The reconstruction error remains below 0.15, ensuring
minimal data distortion. The first three components
alone capture ∼60% of the variance. In the Wine dataset,
9 out of 11 components are needed to maintain 95% of
the explained variance, indicating less reducibility than
the NASA dataset. However, the reconstruction error
remains acceptable, validating the reduction.

B. Independent Component Analysis
For the NASA dataset, ICA shows that nearly all

components need to be retained due to the rapid decay
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(a) NASA: PCA (b) Wine: PCA

(c) NASA: ICA (d) Wine: ICA

(e) NASA: RP (f) Wine: RP

Fig. 2: Dimension reduction analysis and component se-
lection using (Red) Reconstruction Error, (Blue) Kurtosis,
(Black) Explained Variance, and (Green) Distortion
in kurtosis values, which indicates loss of non-Gaussian
structure is further reduced. The reconstruction error is
managed, but preserving the independent components’
structure is prioritized. In the Wine dataset, ICA suggests
that eight components are optimal, capturing signifi-
cant non-Gaussianity, which is essential for the dataset’s
structure, despite a slightly higher reconstruction error
than PCA.
C. Randomized Projections

RP shows a fast and approximately linear decay in
reconstruction error as components decrease for both
datasets. The distortion knee point indicates fewer com-
ponents are needed for accurate cluster distance recon-
struction. Ten random projections are trained to measure
means and standard deviations, revealing increased un-
certainty with fewer components. Despite its improved
speed, RP’s performance is inferior to PCA and ICA
when the number of features is not extremely large.

Figure 3 shows the visual inspection of the NASA
dataset using the first three features transformed by dif-
ferent dimensionality reduction techniques. This demon-
stration allows for observing how the data distribution
changes in the new feature spaces more easily than the
multi-class Wine dataset.

In the original feature space (3a), the first three fea-
tures—Absolute Magnitude, Relative Velocity, and Miss
Distance—show overlapping red and blue points, indi-
cating poor class separation. In the PCA-transformed

(a) Regular (1st 3 Features) (b) PCA (Max Exp. Variance)

(c) ICA (Max Kurtosis) (d) RP (1st 3 Components)

Fig. 3: NASA dimensionality reduction visualization

space (3b), the first three principal components are
plotted, revealing alignment along principal directions
and capturing the most variance ( 60%). This orthog-
onal alignment confirms PCA’s effectiveness in dimen-
sionality reduction while preserving variance. The first
three independent components are plotted in the ICA-
transformed space (3c). ICA maximizes non-Gaussianity,
resulting in components that appear less Gaussian and
more spread out, capturing complex data structures and
emphasizing component independence over variance.
The first three random projections are used in the RP-
transformed space (3d). RP projects data onto a lower-
dimensional subspace with random matrices, maintain-
ing some point distances. The distribution is similar to
PCA, but directions vary due to randomness. Repeated
RP runs can yield different insights based on the random
seed used.

Figure 4 indicates the visualized correlations for the
various reduction methods to help infer the rank and
collinearity of the transformed data. PCA’s transformed
features suggest that the newly transformed components
don’t exhibit any correlation due to the mutually orthog-
onal projections. Additionally, we can see that ICA forms
full-rank and completely independent components with-
out any correlation. However, it is observed that RP,
due to its inherent random projection methodology, does
not consistently transform the data into non-correlated
features. In some cases, a few features have quite a high
correlation, hinting at the potential of a rank reduction.
In the case of PCA, it should be noted that zero correla-
tion does not necessarily imply statistical independence.

V. COMBINED ANALYSIS

The combinations between the dimensionality reduc-
tion methods and the clustering algorithms are further
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(a) NASA: Features (ρ : 17) (b) Wine: Features (ρ : 11)

(c) NASA: PCA (ρ : 10) (d) Wine: PCA (ρ : 9)

(e) NASA: ICA (ρ : 15) (f) Wine: ICA (ρ : 8)

(g) NASA: RP (ρ : 15) (h) Wine: RP (ρ : 9)

Fig. 4: Dataset reduction correlation analysis

explored. The summarized results can be seen visualized
in 5.

A. k-Means Combination Analysis
For the NASA dataset, PCA combined with k-means

clustering shows optimal clusters around 2, supported
by silhouette scores, though the inertia does not indi-
cate a clear knee point. ICA combined with k-means
similarly suggests 2 clusters with some variability. RP
with k-means also indicates a stable clustering trend
around 2 clusters despite some variability introduced by
randomness. In the Wine dataset, PCA with k-means
indicates primary clustering around 2 clusters with a
secondary peak at 6-7, aligning well with the dataset’s
true structure. ICA with k-means suggests a higher range
of 8-10 clusters, reflecting the capture of more inde-
pendent components. RP with k-means also suggests 2
clusters, but the randomness affects the stability of these

(a) NASA: PCA+k-Means (b) Wine: PCA+k-Means

(c) NASA: ICA+k-Means (d) Wine: ICA+k-Means

(e) NASA: RP+k-Means (f) Wine: RP+k-Means

(g) NASA: PCA+GMM (h) Wine: PCA+GMM

(i) NASA: ICA+GMM (j) Wine: ICA+GMM

(k) NASA: RP+GMM (l) Wine: RP+GMM

Fig. 5: Combined dimensionality reduction and cluster-
ing analysis for optimal k selection using (Blue) Silhou-
ette score, (Green) Interia, and (Red) BIC.

results. Overall, depending on the feature combinations,
an impact on the number of clusters is observed. Thus,
the structure of the data is susceptible to the approach.

B. GMM Combination Analysis
For the NASA dataset, PCA combined with GMM

shows an optimal cluster range of either 2 or 12, de-
pending on the selected metric. ICA with GMM shows
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the kurtosis metric suggesting 2 clusters, but the BIC
indicates overfitting with 13-14 clusters. RP with GMM
follows a similar trend to ICA, with some noise from
randomness affecting the results. In the Wine dataset,
PCA with GMM shows a stable peak around 5 clus-
ters, with the BIC metric indicating good performance
across combinations. ICA with GMM suggests 2 clusters
according to the kurtosis metric, which does not align
well with the true structure, indicating less effective
performance. RP with GMM also incorrectly suggests 2
clusters using kurtosis, with the randomness affecting
the BIC metric, leading to less accurate cluster identifi-
cation. Regardless of method combinations, the overall
clusters do not show large changes. As such, the inherent
data structure is the dominant aspect. This could be due
to an excess of data noise.

In general, the following observations of the findings
can be summarized for the explored methods:

• PCA: Consistently performs well with both k-means
and GMM across both datasets. It effectively reduces
dimensionality while preserving the variance, lead-
ing to stable and accurate cluster identification.

• ICA: Shows variability, especially with GMM on the
Wine dataset. While it captures independent com-
ponents, it may not always align with the optimal
clustering structure.

• RP: Introduces randomness, leading to variability in
results. It performs reasonably well with k-means
on the NASA dataset but shows less stability with
GMM, especially on the Wine dataset. While effec-
tive for extremely large feature sets, smaller sets
may not exhibit clear benefits.

Specific properties of the data influence the outputs of
various algorithms. High-dimensional data can lead to
the curse of dimensionality, affecting algorithms differ-
ently. PCA performs well in reducing dimensions, while
RP offers faster but potentially less precise reductions.
Sparse data benefits from PCA and ICA, which capture
variance and independence, respectively, whereas RP
might introduce artifacts if not carefully tuned. Non-
Gaussian distributions favour ICA, which maximizes
non-Gaussianity, while PCA, assuming linearity, may
struggle with non-linear structures without kernel trans-
formations. High collinearity impacts PCA as redun-
dant features contribute to explained variance; ICA may
better separate independent components, whereas RP’s
performance varies with randomness and projection di-
rections.

VI. NEURAL NETWORK ANALYSIS

This study employs a methodology inspired by [1], [2],
implementing a hybrid training strategy that combines
data standardization, 5-fold cross-validation, and 80/20
hold-out test evaluations to ensure a reliable assessment
of each neural network model’s performance. Given
the moderate size of the datasets, a stratified sam-
pling approach is employed throughout the training and
cross-validation procedures to preserve class distribution

within the testing sets. The optimal model configurations
are determined via the grid search approach defined in
Table I. The optimal hyper-parameter results for each
evaluated model and corresponding datasets are sum-
marized in Table II.

TABLE I: Summary of grid search hyper-parameters

Hyperparameter Value
MLP

Layer Size {1, 2, 3}
Number Nodes {5, 10, 15, 20, 25}

Epochs {50, 100}
Activation Functions {Tanh, Relu, Sigmoid}

Optimizer {ADAM, SGD}

The optimal neural network model previously deter-
mined using backpropagation from study [1] is used as
a benchmark to ensure a fair comparison. The datasets
reduced using PCA, ICA, and RP are assessed separately.
Additionally, datasets augmented with clusters derived
from k-means and GMM are also evaluated. The cluster-
ing labels appended to the original and reduced datasets
serve as additional features, potentially enhancing the
neural network’s ability to discern patterns in the data.

TABLE II: Grid search hyper-parameter optimal results
using 5-Fold cross-validation

MLP Baseline

MLP {#F: 11, Node (Layer): [5, 20, 20] (3), Acti: Tanh, Epoch:100, Opti:ADAM}
No Clustering

PCA {#F: 9, Node (Layer): [25, 5, 20] (3), Acti: Relu, Epoch:100, Opti:ADAM}
ICA {#F: 8, Node (Layer): [15, 20, 25] (3), Acti: Relu, Epoch:50, Opti:ADAM}
RP {#F: 9, Node (Layer): [20, 25, 15] (3), Acti: Tanh, Epoch:100, Opti:ADAM}

k-Means Clustering

PCA {#F: 10, Node (Layer): [25, 10, 10] (3), Acti: Tanh, Epoch:100, Opti:ADAM}
ICA {#F: 9, Node (Layer): [5, 15, 15] (3), Acti: Tanh, Epoch:100, Opti:ADAM}
RP {#F: 10, Node (Layer): [20, 25, 15] (3), Acti: Relu, Epoch:100, Opti:ADAM}

GMM Clustering

PCA {#F: 10, Node (Layer): [15, 15, 25] (3), Acti: Relu, Epoch:100, Opti:ADAM}
ICA {#F: 9, Node (Layer): [15, 25, 20] (3), Acti: Relu, Epoch:100, Opti:ADAM}
RP {#F: 10, Node (Layer): [25, 25, 15] (3), Acti: Tanh, Epoch:100, Opti:ADAM}

TABLE III: Final test set evaluated results

No Clustering
Metrics Baseline PCA ICA RP

Accuracy 0.65 0.63 0.61 0.65
Precision 0.61 0.58 0.60 0.62

Recall 0.65 0.63 0.61 0.65
F1-score 0.63 0.59 0.58 0.63

k-Means Clustering
Metrics Baseline PCA ICA RP

Accuracy 0.65 0.65 0.59 0.62
Precision 0.62 0.61 0.55 0.59

Recall 0.65 0.65 0.58 0.62
F1-score 0.63 0.63 0.57 0.60

GMM Clustering
Metrics Baseline PCA ICA RP

Accuracy 0.65 0.65 0.63 0.65
Precision 0.62 0.61 0.60 0.62

Recall 0.65 0.65 0.63 0.65
F1-score 0.63 0.63 0.61 0.63
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(a) Baseline (b) PCA: None (c) PCA: k-Means (d) PCA: GMM (e) ICA: None

(f) ICA: k-Means (g) ICA: GMM (h) RP: None (i) RP: k-Means (j) RP: GMM

Fig. 6: Neural network learning curves for varying clustering and dimensionality reduction methods

A. Neural Network Analysis and Comparison
The final evaluation of the models on the hold-out test

dataset provides insights into their performance on the
Wine dataset. The key metrics considered include accu-
racy, precision, recall, and F1-score. Table III summarizes
the corresponding prediction results. The learning curves
for the various algorithms are analyzed in Figure 6.
Each curve shows the F1-score performance metric for
training and validation datasets as a function of train-
ing dataset size. The multi-class predictions consider a
weighted average, which is an appropriate metric when
the dataset is imbalanced [9].

• PCA: Without clustering, shows a slight decrease
in accuracy and F1-score compared to the base-
line, with an improvement in recall but a drop in
precision. This indicates that while PCA effectively
captures variance, it might lead to overfitting. How-
ever, when combined with k-means clustering, PCA
maintains the same accuracy and F1-score as the
baseline, with a slight improvement in precision.
This combination suggests a balanced bias-variance
trade-off, enhancing generalization without perfor-
mance loss. PCA with GMM clustering achieves the
same metrics as the baseline, indicating that GMM
clustering helps stabilize performance.

• ICA: Without clustering shows a decrease in all
metrics compared to the baseline, highlighting its
higher variance and potential misalignment with
the true data structure. Combining ICA with k-
means clustering further deteriorates performance,
suggesting that k-means does not effectively com-
plement ICA. When combined with GMM cluster-
ing, ICA shows slight improvements in precision
and recall compared to no clustering, though it still
underperforms relative to PCA and the baseline.
This indicates some benefit from GMM clustering,
but the improvement is minimal.

• RP: Without clustering, it maintains similar metrics
to the baseline, indicating its effectiveness despite

its inherent randomness. However, RP combined
with k-means clustering shows a slight decrease
in accuracy and F1-score, with minimal changes
in precision and recall. This suggests that the ran-
domness of RP, combined with k-means clustering,
might introduce instability. Conversely, RP with
GMM clustering achieves a performance similar to
the baseline, indicating that GMM clustering helps
stabilize the variability introduced by RP.

Overall, it is observed that the learning curves of
each method generally follow a similar trend. However,
upon further investigation, adding k-means and GMM
clustering labels generally enhances model performance
across all dimensionality reduction methods by provid-
ing additional structural information that aids in better
generalization. PCA, especially with clustering methods,
provides the most effective dimensionality reduction,
leading to consistent neural network performance on the
reduced datasets. ICA and RP, while useful, require ad-
ditional tuning and might not capture the optimal data
structure as effectively as PCA. This analysis underscores
the importance of selecting appropriate dimensionality
reduction and clustering techniques to improve model
generalization and performance, with PCA and cluster-
ing, particularly k-means, proving to be the most reliable
method for achieving a balanced bias-variance trade-off.
B. Model Time Complexity

In addition to prediction performance, time perfor-
mance is a crucial metric when comparing the algo-
rithms. The training and prediction times, summarized
for both datasets in Figure 7, provide valuable insights
into the efficiency of the models.

The analysis of training times reveals that PCA and
ICA experience slightly higher training times than the
baseline as data points increase, with additional clus-
tering methods (k-means and GMM) further elevating
these times due to their computational overhead. Never-
theless, PCA with clustering maintains reasonable train-
ing efficiency. ICA shows a more noticeable increase in
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(a) PCA (b) ICA (c) RP

Fig. 7: Neural network time comparison for various dimensionality reduction and clustering methods

training times than PCA, particularly when clustering
is added, reflecting ICA’s complexity in extracting inde-
pendent components. RP exhibits higher variability in
training times due to its randomness, with clustering
methods, especially GMM, increasing training times fur-
ther. Despite this, RP’s training times without clustering
remain comparable to those of PCA and ICA. Prediction
times across all methods are relatively stable and low,
indicating that the impact of dimensionality reduction
and clustering is more significant during training rather
than prediction. Unexpectedly, reducing the number of
features does not necessarily result in faster training
times. Time savings are only significant when a substan-
tial number of features are reduced. The baseline model
benefits from having the fewest nodes, and while adding
a feature does increase training time slightly, the overall
impact is minimal. This underscores the importance of
balancing feature reduction with model complexity to
achieve optimal training efficiency.

VII. CONCLUSION

This study demonstrates the effectiveness of various
clustering and feature reduction techniques on datasets
with a moderate number of features (10 & 17) and classes
(2 & 6). Our findings indicate that the specific dataset’s
characteristics significantly influence these methods’ suc-
cess. This observation aligns with the no-free-lunch the-
orem [8], which suggests that no single method is best
for all problems. A general summary and hypothesis
confirmation (✓) or rejection (×) is indicated in Table IV.

Overall, the limitations suggest that the current feature
set might be too small to leverage significant compu-
tational improvements through feature reduction tech-
niques alone. Additionally, the clustering results were
impacted by the datasets’ noise and the metrics’ suit-
ability. This highlights the need for more rigorous data
pre-processing, including outlier detection and noise
reduction, to enhance clustering performance. Therefore,
implementing more advanced data-cleaning techniques
could improve the quality of the clustering outcomes
in future studies. Additionally, exploring alternative
metrics and more robust clustering algorithms might
provide better insights, particularly for datasets with
higher noise levels. Nevertheless, these methods have
demonstrated that data can be successfully clustered and
transformed into lower-dimensional feature sets with
little to no loss of information.

TABLE IV: Model result and hypothesis summary

Models Pros Cons

kMeans ✓ Demonstrates relatively
fast convergence when
compared to GMM

• Maintains performance
metrics and improves
precision when combined
with PCA.

✓ Sensitive to point
initialization.

• Does not complement ICA
effectively, leading to
performance deterioration.

• Increases training times
when combined with
dimensionality reduction
methods.

GMM ✓ Provides additional
structural information that
helps better performance
and generalize the data.

✓ Does not significantly alter
performance metrics but
increases training times.

PCA ✓ Maintains reasonable
training times and
performance metrics when
combined with clustering
methods.

• Captures underlying data
structure effectively,
reducing overfitting.

• Consistently reduces the
gap between training and
cross-validation scores.

× Slight decrease in
performance metrics
without clustering,
indicating possible
overfitting on training
data. ( ̸H: Expected to be
best performing in NN)

• Introduction of clustering
methods increases training
times.

ICA • Suitable for datasets where
components are
statistically independent.

• Shows slight enhancement
in precision and recall
when combined with
GMM.

✓ Exhibits higher variance
and misalignment with the
true data structure.

✓ Underperforms compared
to PCA and the baseline,
particularly with k-means
clustering.

RP ✓ Maintains low and stable
prediction times across
different dataset sizes.

× Comparable training times
to PCA and ICA without
clustering, effective in
high-dimensional data. ( ̸H:
Expected to be fastest)

✓ Slight decrease in
performance metrics with
clustering, indicating
potential instability.

✓ Clustering methods,
particularly GMM, lead to
higher training times.

• Introduces variability due
to randomness, leading to
higher variance in training
times.
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