Supervised Learning

Kirsten Odendaal

I. INTRODUCTION

Modern machine learning can be categorized into clas-
sification and regression problems. This paper focuses
on classification, where the objective is to assign items to
discrete labels based on their features. To investigate this,
two unique classification problems are analyzed using
various algorithms: k-Nearest Neighbours (kNN), Sup-
port Vector Classifier (SVC), and Multi-Layer Perceptron
(MLP) neural networks. The NASA Near-Earth Objects
and Wine Quality datasets, sourced from the Kaggle
repository, were chosen for their unique characteristics
and complexity. These datasets provide a testing ground
for comparing performance, which offers insights into
their strengths and limitations in handling real-world
data scenarios.

A. Initial Hypothesis:

The general hypothesis (H) of the study is as follows;

o k-Nearest Neighbors (kKNN): kNN will likely have
the lowest predictive performance due to its sim-
plicity and sensitivity to irrelevant features (curse
of dimensionality). kNN only stores data, which
is extremely fast; however, its prediction will be
the slowest of all three algorithms, especially on
larger datasets, due to its “lazy” [6] nature. For
imbalanced datasets, kNN might struggle unless
distance weighting is applied to disregard the effects
of extreme outliers.

e Support Vector Classifier (SVC): The SVC is expected
to excel on the binary classification datasets, given
its internal ability to handle two-class maximal sep-
aration tasks. Training time is expected to be signif-
icant, especially with non-linear kernels and larger
datasets. Furthermore, algorithm modifications are
required for multi-class problems, likely worsening
performance and making training times comparable
to or worse than MLPs.

o Multi-Layer Perceptron (MLP): The MLP is antici-
pated to outperform the other algorithms due to
its ability to learn complex smooth-continuous map-
pings, thus making them well suited for both binary
and multi-class problems. However, this complexity
will likely result in the slowest training times of all
algorithms.

II. DATASET EXPLANATION

The study investigates the use of two different
datasets. The first focuses on the NASA Near-Earth Ob-
ject (NEO) dataset, which provides detailed information

on asteroids [3]. This source contains 4,687 instances and
40 features related to physical asteroid characteristics
such as size, orbits, and orientations. The target feature,
”"Hazardous,” is a binary indicator detailing whether the
asteroid poses a potential threat to Earth.

Redundant and zero-variance features were removed
from the NASA dataset, resulting in 17 features with a
binary target class (safe or hazardous). Figure 1 sum-
marizes the feature and target distributions. The NASA
dataset provides an interesting foundation for model
comparison due to the following challenges:
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Fig. 1: Distributions of dataset 1: Nasa

1) Variety of Features: The dataset includes 17 distinct
features detailing various aspects of asteroid prop-
erties, such as physical characteristics (e.g., absolute
magnitude, estimated diameter), orbital parameters
(e.g., eccentricity, semi-major axis, orbital period),
and velocity metrics. This diversity allows for ex-
ploring different feature interactions and their im-
pact on model performance.

2) Class Imbalance: The large class imbalance (83.89%
non-hazardous and 16.10% hazardous) presents a
real-world challenge for machine learning models.
This imbalance requires advanced evaluation met-
rics (e.g., precision, recall, Fl-score) to ensure reli-
able model performance.



3) Critical Application: Classifying asteroids as haz-
ardous or non-hazardous has high stakes for plane-
tary defence and risk assessment. This adds a layer
of importance and urgency to developing accurate
and reliable predictive models so as not to miss any
false positives.

The second dataset, consisting of 1,143 instances and
11 features, relates to the Portuguese "Vinho Verde’ wine.
It focuses on classifying wine quality based on physico-
chemical properties such as acidity and pH levels, with
quality scores ranging from 3 (poor) to 8 (excellent) [4].

Unlike the NASA source, this dataset contains no re-
dundant data features; therefore, minimal pre-processing
is required. Figure 2 summarizes the corresponding
feature and target distributions. The wine classification
dataset provides additional interesting challenges in the
context of model comparison:
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Fig. 2: Distributions of dataset 2: Wine

1) Multiple Ordered Classes: The dataset consists of
1,143 ordered quality scores, indicating a progres-
sion from poor to excellent wine quality with six
discrete classes. Thus, appropriate methods should
be selected to handle such multi-class data.

2) Varying Class Imbalance: The imbalanced nature of
the quality scores (ranging between 0.66% and
42.32%) additionally requires specialized evaluating
techniques such as using evaluation metrics beyond
accuracy to ensure reliable model performance.

Given the significant imbalance in both datasets, re-

lying only on accuracy can be misleading as it fails to
account for the difference between false positives and
false negatives. The Fl-score, the harmonic mean of
precision and recall [7], provides a more balanced evalu-
ation by considering false positives and false negatives.
In the case of the NASA dataset, where false positives
carry large consequences, recall becomes crucial. Recall
measures the model’s ability to identify all positive
instances, ensuring that critical positive cases are not

missed. Therefore, the Fl-score will be the primary per-
formance metric. However, for the final test evaluation,
all metrics (with a particular emphasis on recall for the
NASA dataset) will be considered to ensure a com-
prehensive assessment that balances the importance of
correctly identifying positive instances and minimizing
false positives.

While additional data pre-processing steps like out-
lier removal, correlation analysis and feature engineer-
ing/selection exist, these ultimately fall outside the
scope of the analysis but should nevertheless be con-
sidered in most machine learning pipelines to achieve
the best predictive performance.

III. METHODOLOGY

In this study, we aim to investigate the performance of
three different algorithms: k-Nearest Neighbors (kNN),
Support Vector Classifier (SVC), and Multilayer Percep-
tron (MLP). Each algorithm is evaluated using consistent
and standardized methodologies to ensure robust com-
parisons. Technical details regarding the algorithms and
their detailed formulations can be found in [7], [6].

A. Training Strategy:

A hybrid training strategy combining hold-out and
cross-validation methodologies ensures a reliable evalu-
ation of each algorithm’s performance. Figure 3 presents
the approach schematic.
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Fig. 3: Train and test strategy schematic

First, the data is partitioned into training and hold-
out test sets using an 80/20 split, with 80% of the
data reserved for training and the remaining 20% for
final evaluation. Next, a 5-fold cross-validation approach
is applied within the training set to optimize hyper-
parameters for the best bias-variance trade-off. Each
fold maintains an 80/20 split, ensuring consistency with
the overall training strategy. Given the extreme imbal-
ance characteristics of both datasets, a stratified sam-
pling approach is employed throughout the training and
cross-validation procedures to preserve class distribution
within the testing sets. The dataset target distributions
for the train and test splits can be seen in Figure 4.

Both kNN and MLP algorithms inherently support
multi-class classification. While kNN operates discretely
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Fig. 4: Class distribution between train (blue) and test
(green) datasets

using a simple voting scheme, the MLPClassifier sup-
ports multi-class classification by applying the Softmax
function (probability normalization) for the output lay-
ers [1]. In contrast, the SVC employs a one-vs-multi-class
strategy, where either individual classifiers are trained
for each pair of classes (one-vs-one), or classifiers are
constructed for each class against all others (one-vs-
rest) [1]. This approach aligns with the internal principles
of support vector machines, which aim to maximize
separation between two classes. However, these strate-
gies can significantly slow down the training process for
multi-classification problems.

B. Pipeline Evaluation:

Once the data is appropriately partitioned, a pipeline
is established for consistent evaluations [1]. Data stan-
dardization is applied as a pre-processing step within
the pipeline to ensure that feature parameters are scaled
to approximately the same size. This allows stable
model training as large-magnitude features cannot bias
and dominate the learning processes. Following data
transformation, model hyper-parameter tuning is con-
ducted using a grid search approach with five-fold cross-
validation. Parameter configurations vary depending on
the algorithm, as summarized in Table I. It should be
noted that other parameters could be tuned. However,
not all configurations and parameters could be opti-
mized due to the limited time and computing resources.

Nevertheless, to gain intuition on the intricacies and
characteristics of each model algorithm, first, the model’s
behaviour under varying learning and validation condi-
tions is investigated.

IV. LEARNING CURVES

Learning curves are valuable for evaluating machine
learning algorithms, showing error rates based on train-
ing size to illuminate the bias-variance trade-off. This
trade-off balances bias (errors from overly simple mod-
els) and variance (errors from overly complex models
sensitive to data fluctuations). Initially, training error
is low with minimal data, but validation error is high
due to poor generalization. Indicated in [5], as training

TABLE I: Summary of grid search hyper-parameters

Hyperparameter Value

kNN

{1,2,...,100}
{manhatten, Euclidean}
{Uniform, Distance}
SvC

Number of Neighbors
Heuristic
Weights

Regularization (C)
Kernel

{0.1, 1.0, 10, 100}
{Linear, Polynomial, RBEF, Sigmoid}

Polynomial Degree {1,2,3}
MLP
Layer Size {1,2,3}
Number Nodes {5,10,15,20,25}
Epochs {50, 100}
Activation Functions {Tanh, Relu, Sigmoid}
Optimizer {ADAM, SGD}

size increases, training error rises, and validation error
falls, indicating improved generalization. A narrow gap
between training and validation error in simple models
suggests high bias and low variance, signalling the need
for more complexity or features. In contrast, complex
models like neural networks might exhibit low bias but
high variance, shown by a large error gap. Solutions
include adding more data, increasing regularization, or
simplifying the model.

The learning curves for the three algorithms, kNN,
SVC, and MLP, on the NASA and Wine datasets, are
analyzed in Figure 5. Each curve shows the Fl-score per-
formance metric for training and validation datasets as
a function of training dataset size. As the models are not
yet tuned for optimal hyper-parameters, Sklearn defaults
hyper-parameters are considered for the learning curve
analysis to gain intuition on general data impacts.

A. Dataset 1: NASA

1) k-Nearest Neighbors (kNN): The training Fl-score re-
mains consistently high, progressively increasing as
more data is added. The validation Fl-score starts
lower but continually improves, indicating initial
overfitting that improves with more data. Large
variance is noticed and is likely the consequence
of the curves of dimensionality due to many data
features. Based on the current training and vali-
dation data trajectories, more data points would
help improve overall performance, thus reducing
the model variance and increasing bias leading to
improved performance.

2) Support Vector Classifier (SVC): The training F1-
score remains high, while the validation F1-score
increases and stabilizes around 0.95, showing good
generalization with more data. However, adding
more data will likely not significantly improve the
performance as we approach the irreducible error
region for the validation line, thus causing an over-
all increase in modelling bias.

3) Multi-Layer Perceptron (MLP): The training Fl-score
is very high, meaning the model can nearly provide
a perfect fit with limited data perfectly. The vali-
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Fig. 5: Learning curves for each dataset and modelling algorithm

dation curve begins low but quickly increases and
stabilizes around 2000 data points. There appears to
be a good balance between variance and bias, and
more data may improve the model slightly.

B. Dataset 2: Wine

1) k-Nearest Neighbors (kNN): The training Fl-score
quickly stabilizes around 0.65. Additionally, the val-
idation shares a similar trend, indicating that the
model exhibits quite a high variance. Thus, more
data may help increase the performance issues.
Support Vector Classifier (SVC): The training F1-score
decreases with more data, indicating increasing dif-
ficulty in fitting the training data. The validation F1-
score improves gradually but stabilizes around 0.60.
The relatively large gap suggests the potential of
high model variance. Adding more training points
would likely reduce the overall modelling variance
but is unlikely to significantly improve the overall
performance as the model approaches a slow con-
vergence with more data points.

Multi-Layer Perceptron (MLP): The training Fl-score
decreases with more data, similar to SVC on the
Wine dataset. The validation F1-score improves ini-
tially and also stabilizes around 0.60, indicating
a high variance problem. Again, a plateau has
been reached, thus indicating that more data will
likely not significantly improve the prediction per-
formance but could help reduce risk of overfitting.

2)

3)

In summary, inspecting learning curves helps diag-
nose high bias or variance, guiding model optimiza-
tion through appropriate adjustments in complexity and

training strategies. Based on the two datasets, it is clear
that the multi-classification problem exhibits intrinsic
difficulties for all models.

V. VALIDATION CURVES

Learning curves provide a macroscopic view of how
training data size affects model performance. In con-
trast, validation curves offer a more microscopic view
as specific hyper-parameters influence the training pro-
cess. Both are important for comprehensive model un-
derstanding, evaluation, and optimization in machine
learning.

The validation curves for the three algorithms, kNN,
SVC, and MLP, on the NASA and Wine datasets are
analyzed in Figure 6. Again, each curve shows the F1-
score performance metric for training and validation
datasets. However, in this case, using the individual
ranges defined in Table I, the model hyper-parameters
are varied to investigate the impact on performance.

A. k-Nearest Neighbors (kNN)

Important hyper-parameters for the kNN are the number
of neighbours (k) and the distance weighting description
(Weight). These describe how many neighbouring points
to consider and if the “distance” should be considered
in evaluating point influence on the overall prediction.
o For both datasets, lower k values result in low bias
but high variance (overfitting), with the training
score significantly higher than the cross-validation
score. As k increases, this results in high bias but
lower variance (underfitting), with training and
cross-validation scores being lower and closer.
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Fig. 6: Validation curves for each dataset and modelling algorithm

e The distance weighting outperforms the uniform
scheme in terms of cross-validation score, indicating
that it is a better metric. However, after using the
distance metric, the model fully fits the training set
of data. This is the result of using too few data
points for too many data attributes. The model over-
fits both datasets because there is excessive sparsity
in the higher-dimensional space.

B. Support Vector Classifier (SVC)

For the SVC algorithm, two important hyper-parameters
are the kernel type (kernel) and the regularization pa-
rameter (C). These parameters transform the data into
a higher-dimensional space where it may become more
easily separable. In comparison, the regularization pa-
rameter controls the complexity of the decision bound-
ary.

o For both datasets, high C values lead to very high
training scores but relatively lower cross-validation
scores, indicating overfitting. This is more pro-
nounced in the Wine dataset, especially with the
polynomial and RBF kernels.

e The RBF kernel generally performs well across dif-
ferent C values in terms of cross-validation scores,
indicating its robustness and good generalization
ability.

¢ The polynomial kernel (2 degrees) can achieve high
training scores but tends to overfit, particularly at
higher C values, as seen in the Wine dataset.

C. Multi-Layer Perceptron (MLP)

The number of hidden layers and nodes typically gov-
erns the MLP. These parameters control the model’s
ability to capture complex functions. Furthermore, a look
at the internal optimizer strategy, Stochastic Gradient
Descent (SGD) or Adaptive Momentum (ADAM) algo-
rithms are explored.

o For both datasets, increasing the number of hidden
nodes leads to higher training scores but does not
always translate into higher cross-validation scores,
indicating a strong risk of overfitting.

e The cross-validation performance tends to stabilize
after a certain number of hidden nodes (around 10-
20 for NASA and 20 for Wine), suggesting that there
is an optimal number of hidden nodes.

o Adding more layers (2 or 3) can slightly improve
cross-validation performance, but the improvement
is marginal and should be weighed against the in-
creased computational complexity and risk of over-
fitting.

o ADAM optimizer routinely demonstrated improve-
ments over the SGD, indicating the additional mo-
mentum improves the ability to locate more optimal
and stable weights.

While not explicitly shown, an investigation into the
Relu and Tanh activation functions was also conducted.
Generally, both seem to provide very similar degrees of
accuracy and computational time. However, as indicated
in [7], for more complex networks, Relu can be more
efficient (simpler formulation) and avoid the challenges
of accumulating extremely small gradients (vanishing



gradient problem). These effects were not explicitly ob-
served but are well-known challenges.

VI. NEURAL NETWORKS LOSS

Epoch Loss Curves are vital for monitoring neural
network training. They track loss against training epochs
(iterations), revealing overfitting when validation loss
rises while training loss falls and reverse for underfitting.
These curves identify when overfitting starts, guiding
decisions like selecting the optimal amount of epochs
using early stopping. They also aid in adjusting the
learning rate to ensure optimal convergence.

The neural network is initially trained with a learning
rate of 0.001, Nesterov momentum set to True with a
value of 0.9, and cross-entropy loss for classification
tasks. These settings optimize the process, with the
moderate learning rate promoting steady convergence
and Nesterov momentum accelerating training by con-
sidering future gradient direction. A larger momentum
value helps smooth optimization and prevents oscilla-
tions [7]. Results are visualized in Figure 7 for training
and internal batch validation sets.
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Fig. 7: MLP epoch loss curves for each dataset

A. Dataset 1: NASA

The epoch loss curve for the NASA dataset shows that
both training and test losses drop sharply during the ini-
tial epochs, indicating that the model quickly learns from
the data. At around 75 epochs, the test loss increases
while the training loss decreases and stabilizes at a low

value. This divergence indicates the onset of overfitting,
where the model performs well on the training data but
poorly on the test data due to excessive fitting to the
training data’s noise.

B. Dataset 2: Wine

The epoch loss curve for the Wine dataset highlights
different characteristics. As before, both training and test
losses initially decrease sharply, showing effective learn-
ing in the early stages. After approximately 100 epochs,
the test loss rises while the training loss continues to fall,
similar to the NASA dataset. This pattern indicates that
the model starts overfitting at this point. The test loss
starts at a higher value and decreases more gradually
than the NASA dataset, suggesting that the Wine dataset
is more complex or noisier, making it harder for the
model to generalize well.

Based on the outcomes, both datasets benefit from
early stopping to prevent overfitting. For NASA, early
stopping around 50 epochs is ideal, while for Wine, it is
around 100 epochs. The Wine dataset appears to be more
challenging for the model, as indicated by the higher
initial test loss and the slower reduction in loss compared
to the NASA dataset. This suggests that the model may
need additional tuning, such as regularization or hyper-
parameter adjustments, to perform better on the Wine
dataset. The learning rate can also be modified; however,
based on the general smoothness of the descent, the
current value is deemed adequate. Nevertheless, this
parameter is an additional hyper-parameter, which can
significantly impact the overall performance.

VII. TEST RESULTS AND DISCUSSION

The optimal model configurations are determined via
the grid search approach defined in Table I. The opti-
mal hyper-parameter results for each evaluated model
and corresponding datasets are summarized in Table II.
Many outcomes determined from the learning, valida-
tion, and epoch curves are confirmed to be the optimally
obtained models.

TABLE II: Grid search hyper-parameter optimal results
using 5-Fold cross-validation

NASA

kNN  {Neighbours: 17, Heuristic: Manhatten, Weights: Distance}

SVC  {Regularization: 10, Kernel: RBF, Poly degree: 1}

MLP  {Node (Layer): [5, 25, 10] (3), Acti: Relu, Epoch:100, Opti:ADAM}

Wine - Imbalance

kNN  {Neighbours: 50, Heuristic: Manhatten, Weights: Distance}

SVC  {Regularization: 10, Kernel: RBF, Poly degree: 1}

MLP  {Node (Layer): [5, 20, 20] (3), Acti: Tanh, Epoch:100, Opti:ADAM}

A. Model Performance Comparison

The final evaluation of the kNN, SVC, and MLP models
on the hold-out test dataset provides further insights into
their performance across the NASA and Wine datasets.
The key metrics considered include accuracy, precision,
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Fig. 8: Confusion matrices for each model and dataset

recall, and Fl-score. Table III shows a summary of the
corresponding prediction results, which can be visually
confirmed in the confusion visualization shown in Fig-
ure 8. The multi-class predictions consider a weighted
average, which is an appropriate metric when the dataset
is imbalanced [7].

TABLE III: Final test set evaluated results

NASA
Metrics kNN SVC MLP
Accuracy 0.93 0.96 0.99
Precision 0.89 0.89 0.97
Recall 0.68 0.83 0.98
Fl-score 0.71 0.86 0.98
Wine - Imbalance

Metrics kNN SVC MLP
Accuracy 0.69 0.64 0.65
Precision 0.68 0.61 0.61
Recall 0.69 0.64 0.65
Fl-score 0.67 0.62 0.63

The MLP classifier’s exceptional performance, out-
performing both kNN and SVC across all metrics, is
a significant finding. With the highest accuracy (0.99),
precision (0.97), recall (0.98), and F1-score (0.98) on the
NASA dataset, the MLP model demonstrates its high
effectiveness in capturing underlying patterns with great
accuracy and generalization. The SVC also performs
well, with an accuracy of 0.96 and an Fl-score of 0.86,
showing strong performance but slightly lower than
MLP. The kNN shows good performance with an accu-
racy of 0.93, but its lower recall (0.68) and F1-score (0.71)
suggest sensitivity to the choice of neighbours in regards
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to the impacts of too many data features. The SVC model
demonstrates balanced performance with precision and
recall both at 0.89 and 0.83, respectively, reflected in its
F1-score of 0.86. The MLP’s near-perfect scores across all
metrics confirm its superiority, likely due to its ability to
model complex non-linear relationships.



The performance across all models was notably lower
for the Wine dataset, highlighting the challenges intro-
duced by class imbalance and dataset complexity. All
three models showed similar performance levels with
marginal differences, indicating none significantly out-
performed the others in handling the imbalance effec-
tively. This is evidenced in confusion plots, in which
no model can adequately predict the boundary classes.
kNN achieved an accuracy of 0.69 and an Fl-score of
0.67, slightly better in balancing precision (0.68) and
recall (0.69) than SVC and MLP. SVC had the lowest
accuracy (0.64) and Fl-score (0.62), with lower precision
(0.61) and recall (0.64), suggesting it struggled more with
the imbalanced data. MLP showed modest performance
with accuracy (0.65), precision (0.61), recall (0.65), and
Fl-score (0.63). Although it balanced the metrics slightly
better than SVC, the simpler kNN model outperformed
the MLP classifier. Several potential reasons for this
include:

e Local Learning: kNN, as a local learner, makes de-
cisions based on nearby data points, which can
be advantageous for datasets with locally smooth
decision boundaries [6]. MLP, aiming to learn global
patterns, might be less effective if the decision
boundaries are complex or the data is limited.

o Hyper-parameter  Sensitivity: MLP’s performance
highly depends on hyper-parameters like the
number of layers, neurons, optimizers, learning
rate, and regularization strength. Without optimal
tuning, MLP might underperform. Due to
computational constraints, only a few hyper-
parameters were explored, leaving learning rate
and regularization strength largely unexplored.

B. Model Time Complexity Comparison

In addition to prediction performance, time performance
is a crucial metric when comparing the algorithms.
The training and prediction times, summarized for both
datasets in Figure 9, provide valuable insights into the
efficiency of the models.

Based on the outcomes, the following generalities can
be drawn: The kNN is fast in training (it only stores
data) but slower during prediction due to its inherent
“lazy” nature; this drawback could be computed, espe-
cially with large datasets. The SVC is computationally
expensive both in training and prediction, particularly
with large datasets and non-linear kernels. The MLP
has extremely high computational costs due to multiple
interconnected layers being optimized and requiring
significant training time; however, its prediction time is
extremely fast through parallelism.

VIII. CONCLUSIONS

The evaluation of kNN, SVC, and MLP models on the
NASA and Wine datasets highlights significant differ-
ences in performance and computational efficiency. A
general summary and hypothesis confirmation (v') or
rejection (x) is indicated in Table IV.

TABLE IV: Model result and hypothesis summary

Models | Pros Cons

kNN v’ Application of weighting v’ Performance degrades
distance improved with high dimensionality
performance. as all features are required
Effective for complex for prediction.
datasets where local Suffers from expensive
representation is simpler prediction times (WA: better
than global representation than SVC).
(HA: best performing on Very sensitive to the choice
Wine). of k and distance metrics.
Essentially zero training
time required

svC Effective in Computationally expensive
high-dimensional spaces training for larger datasets.
due to non-linear kernel Inherently binary, making
mappings. (A: worse than multi-class strategies
MLP on binary class). inefficient. (/A: Training
Robust to overfitting with time much better than
appropriate regularization. MLP)

MLP Capable of capturing Computationally intensive
complex patterns through training.
deep architecture. (H: Prone to overfitting
Lower prediction without regularization and
performance on multi-class hyper-parameter tuning
than KNN) o Requires large amounts of

v__Fast prediction time. data and tuning.

While the MLP model demonstrated superior per-
formance across all metrics for the NASA dataset, all
models struggled with the Wine dataset, indicating chal-
lenges related to class imbalance and dataset complexity.
The target variable in wine classification is inherently
subjective and heavily influenced by human factors and
preferences. This subjectivity suggests that there may
not be a systematic way to quantify wine quality, thus
limiting the ability to capture consistent patterns.

Future research should focus on integrating advanced
techniques with qualitative assessments to develop more
comprehensive and robust models, acknowledging the
complexity and variability intrinsic to wine quality eval-
uation. Potential improvements could enhance model
performance, such as further hyper-parameter tuning
and advanced algorithms like boosting and ensemble
methods. Additionally, feature engineering and data
augmentation, including oversampling and synthetic
data generation, offer potential solutions to overcome
imbalance-related issues.
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