
1

Randomized Optimization
Kirsten Odendaal

I. INTRODUCTION

Conventional deterministic optimization methods of-
ten struggle with real-world problems as they conven-
tionally contain non-differentiable functions, large input
spaces, and noisy functions with many local optima.
These challenges can cause traditional optimizers to
become ”stuck” in sub-optimal solutions or prove to be
strictly infeasible [10]. To address these limitations, this
paper explores random optimization methods.

In this study, three algorithms are explored: Random
Hill Climbing (RHC), Simulated Annealing (SA), and
Genetic Algorithms (GA). These methods are applied
to three use cases, from academic to real-world. Ini-
tially, two unique optimization benchmark problems,
FourPeaks (FP) and Max k-Colour (KC), are examined to
gain intuition on the behaviour and performance of each
algorithm. Each optimizer is then implemented within a
Neural Network (NN) framework as an alternative to the
conventional backpropagation (BP) optimization. The
Wine Quality dataset, sourced from the Kaggle reposi-
tory, is used to evaluate the robustness of each optimizer.
This dataset serves as a suitable testing ground for com-
paring the performance of these algorithms, providing
insights into their strengths and limitations in handling
real-world data scenarios.

A. Initial Hypothesis:

The general hypothesis (H) of the study is as follows;
• Random Hill Climbing: RHC will have the lowest

performance among the three optimizers due to its
inability to escape local minima with large basins
of attraction [4]. It will struggle to find the global
optimum in the KC problem due to its stochastic
search method, which may not effectively handle
the structural complexities of graph solutions. How-
ever, RHC will perform adequately in neural net-
work training scenarios, especially in quick evalu-
ation times, making it the fastest optimizer for all
problems.

• Simulated Annealing: SA will outperform both GA
and RHC on FP by effectively exploring and escap-
ing local optima through its probabilistic acceptance
of worse solutions early in the search. On KC, SA’s
performance will be comparable to RHC due to the
structural complexity of graph solutions. In neural
network training, SA will outperform RHC and GA
because of its ability to quickly escape local minima,
resulting in better convergence and a reduced risk
of overfitting.

• Genetic Algorithm: GA will perform better than RHC
but worse than SA on FP due to the higher cost
of function evaluations despite utilizing crossover
operations to explore diverse regions of the search
space. GA will outperform KC and produce more
reliable global optima by efficiently managing struc-
tural alterations in graph solutions. However, be-
cause of its numerous parameters and high comput-
ing overhead, GA might not be as feasible for direct
substitution in backpropagation for neural networks
as faster optimizers like RHC and SA.

II. RANDOM OPTIMIZERS

Random optimization is a category of algorithms that
use probabilistic methods to explore the solution space.
These methods are highly successful for complex land-
scapes with many local optima, as they use randomness
to escape these minima and locate the global optimum.
The stochastic nature of these algorithms allows for a
more flexible exploration of the solution space compared
to deterministic methods.

Three methods are commonly explored from this class
of optimizers: Random Hill Climbing, Simulated An-
nealing, and Genetic Algorithms. These methods vary
in complexity and how they implement randomness to
solve optimization problems effectively.

A. Random Hill Climbing:

This algorithm starts from a random solution and itera-
tively moves to neighbouring solutions, adopting better
ones. The process continues until no better neighbours
are found, with randomness enabling the exploration of
different solution space regions [7]. Critical parameters
are:

• Step Size: Controls the magnitude of random
changes to the current solution. Too small limits
exploration, while too large can miss local exploita-
tion.

• Number of Restarts: Specifies how often the algorithm
restarts from a new random initial solution, helping
avoid local optima by giving multiple chances to
find a global optimum.

B. Simulated Annealing:

Inspired by the metallurgical annealing process, this
algorithm simulates cooling to reach a minimum energy
state. It starts with a high ”temperature” for broad ex-
ploration, gradually decreasing to favour improvements
while allowing occasional worse moves to escape local
optima [7]. Key parameters are:

2

• Initial Temperature: Sets the starting temperature,
with a higher value facilitating broader exploration
and a lower value focusing on exploiting the best
solutions.

• Decay Rate: Controls how quickly the temperature
decreases, balancing thorough exploration with con-
vergence speed.

C. Genetic Algorithm:

Mimicking natural selection, genetic algorithms evolve
a population of solutions over generations. A fitness
function evaluates solutions, and the best performers
are selected for crossover and mutation to create a new
population for each generation [7]. Key parameters are:

• Population Size: Determines the number of solutions
in each generation. A larger size increases diversity
and exploration but requires more computational
resources, while a smaller size speeds up the algo-
rithm but reduces diversity.

• Mutation Rate: Defines the probability of random
individual changes. A higher rate helps escape local
optima but can disrupt convergence if excessive; a
lower rate preserves good solutions but may reduce
exploration.

In optimization algorithms like RHC, SA, and GA,
the Max Attempts and Max Iterations are critical conver-
gence parameters [2]. RHC uses them to limit iterations
without fitness improvement and cap total iterations.
SA adds a temperature schedule to manage the accep-
tance of worse solutions, balancing exploration with
convergence. GA’s evolve populations through selec-
tion, crossover, and mutation across generations. Despite
these variations, all aim to balance exploration and ex-
ploitation, stopping when a satisfactory solution is found
or computational limits are reached, ensuring effective
optimization within set constraints.

III. OPTIMIZATION PROBLEMS

Two discrete benchmark problems are explored to
evaluate the performance of the random optimization
algorithms: the Four Peaks problem and the Max k-Colour
problem. Both problems are formulated as maximiza-
tion problems to allow for one-to-one comparison and
analysis of each algorithm’s overall performance. Each
problem is explored using the mlrose [2] python package.

A. FourPeaks

The Four Peaks problem is a well-known benchmark in
optimization and is particularly useful for evaluating
the balance between exploration and exploitation in
algorithms. The problem is defined on a binary string of
length n. The fitness function, f , is designed to reward
strings that have a significant number of consecutive 0s

at the beginning and consecutive 1s at the end. Formally,
the fitness function is defined as:

f (x, T) = max(tail(0, x), head(1, x)) + R(x, T) (1)
tail(b, x) = is the number of trailing b’s in x

head(b, x) = is the number of leading b’s in x

R(x, T) =

{
n, if tail(0, x) > T and head(1, x) > T
0, otherwise

T is a threshold parameter expressed as a percentage
of the state space dimension, and R is an additional
reward applied when both tail and head are greater than
T. This problem has two local maxima and two global
maxima, which becomes increasingly difficult to identify
for large values of T because the basin of attraction for
the inferior local maxima becomes larger [4]. Therefore, it
becomes an interesting challenge for random optimizers
as it highlights the challenges of escaping local optima
in search of small global peaks.

B. Max k-Colour

The Max k-Colour problem is a combinatorial optimiza-
tion problem that involves colouring the nodes of a
graph such that no two adjacent nodes share the same
colour, using at most k colours. The fitness function for
this problem is defined as:

f (x) = # edges with different-coloured endpoints (2)

The goal is to maximize this fitness function, effec-
tively minimizing the number of conflicts (i.e., edges
with same-coloured endpoints). This problem presents
a very interesting challenge as it is known to be NP-
Complete [4], thus making it an ideal case for algo-
rithm comparison. Additionally, the problem contains
an underlying structure that may present challenges for
random memoryless optimizers.

IV. OPTIMIZER ANALYSIS

The analysis of the three random optimizers, RHC, SA,
and GA, begins with systematically investigating their
performance on the two academic benchmark problems:
the Four Peaks and the Max K-Colour problem. This inves-
tigation aims to gain insight into each optimizer’s overall
effectiveness by considering several key aspects, such
as problem complexity, number of function evaluations,
number of iterations, and overall evaluation time.

The optimization process is repeated with five ran-
dom seeds to ensure adequate opportunity for random-
ized exploration. Additionally, the performance of each
optimizer is analyzed across different hyper-parameter
settings to understand their impacts on the optimization
outcomes. A summary of the corresponding explored
parameters is summarized in Table I. This includes vari-
ables specific to the explored problem definitions and
the random optimization algorithms.

3

(a) RHC: FourPeak (b) SA: FourPeak (c) GA: FourPeak

(d) RHC: k-Colour (e) SA: k-Colour (f) GA: k-Colour

Fig. 1: Optimizer Complexity Performance Curves

TABLE I: Optimizer parameter summary

Hyper-parameter Value
Problem Definition

Fourpeak- string size {20, 40, 60, 80, 100}
Fourpeak- threshold {0.20}

k-Colour - node number {20, 40, 60, 80, 100}
k-Colour - max adjacent edges {6}
k-Colour - max number colors {5}

Algorithm Constants
Maximum Attempts {25, 50, 75}
Maximum Iterations {50,000}

RHC
Restart size {0, 25, 50, 100}

SA
Initial Temperature {10, 100, 1000}

Decay rate {0.99}
GA

Population size {25, 50, 100}
Mutation size {0.2, 0.5, 0.8}

V. OPTIMIZER COMPLEXITY CURVES

This section examines how each optimizer’s perfor-
mance varies with different levels of problem complexity.
For the Four Peaks problem, the algorithms are evaluated
as the size of the binary string varies. For the Max K-
Colour problem, the number of nodes in the graph is
varied. By systematically varying the string sizes (ns)
and the number of nodes (no), the investigation provides
a comprehensive view of each optimizer’s scalability and
robustness to problem complexity. Additional parame-
ters, such as the threshold factor, number of colours,
and number of adjacent edges, were fixed for this study
due to computational and time resource limitations. The
complexity curves for each optimizer on the Four Peaks

and Max K-Colour problems are analyzed in Figure 1.

A. Problem 1: Four Peaks:

1) Random Hill Climbing: As problem complexity in-
creases, the average number of iterations increases,
improving overall fitness. However, global maxima
are reached only for smaller string lengths (20 and
40). More complex problems often find only local
optima, requiring additional attempts and restarts,
which increase computational demand.

2) Simulated Annealing: With increasing complexity, the
number of iterations grows. The noisy fitness curve
due to initial high temperature stabilizes as the tem-
perature decreases, leading to consistent improve-
ments. Optimal fitness is identified for each problem
size, but high temperatures can delay convergence,
significantly increasing the number of function eval-
uations.

3) Genetic Algorithm: GA performs well, finding global
optima for every problem size. It converges faster
than other algorithms due to its parallel nature, al-
though this increases computational demand. Con-
sistent convergence plateaus suggest that the popu-
lation size is sufficient to locate the global optimum
within a consistent number of iterations.

B. Problem 2: Max K-Colours:

1) Random Hill Climbing: As the number of nodes in-
creases, solutions form discrete clusters. While per-
formance improves with more attempts, the com-
putational time increases. While the optimizer often
finds the global optimum only for the smallest

4

(a) RHC: FourPeak (b) SA: FourPeak (c) GA: FourPeak

(d) RHC: k-Colour (e) SA: k-Colour (f) GA: k-Colour

Fig. 2: Hyper-Parameter Optimizer Curves

problem size, RHC performs adequately within a
reasonable time for the remaining sizes.

2) Simulated Annealing: SA consistently converges to a
solution for all complexity levels. High temperatures
increase the likelihood of selecting worse solutions
early on, leading to higher computational demand.
The algorithm converges when the temperature be-
comes sufficiently low, but many iterations reach
the maximum limits without better solutions. Un-
fortunately, this observed phenomenon is a quirk
of the SA convergence criteria when temperatures
are extremely large, thus leading to repeated restarts
and unnecessary function evaluations.

3) Genetic Algorithm: GA performs well on complex
problems, though it heavily relies on tuning param-
eters. The algorithm is typically robust in combina-
torial problems, as the crossover operator combines
good solutions to create better offspring, thus natu-
rally retaining the problem structure. Maintaining a
diverse population aids in the effective exploration
of the solution space. GA converges with fewer
iterations and more consistently than Simulated An-
nealing, though a larger population size could yield
even better results.

VI. OPTIMIZER INDIVIDUAL PERFORMANCE CURVES

We explore the specific algorithm’s parameter sensi-
tivity further. In the context of each particular problem,
a fixed complexity size (n = 60) is established to allow
for a robust comparison. Such an analysis is crucial for
understanding the strengths and weaknesses of each op-
timization algorithm, particularly in handling complex

and large-scale problems. Figure 2 presents the impact
of the varying parameters for each optimizer on the Four
Peaks and Max k-Colour problems. Table V shows the
mean performance summary of all analyzed metrics.

TABLE II: Optimizer Results summary

RHC SA GA
FourPeaks (n = 60)

max f (x) 115.0 189.0 189.0
f (x) 13.08 ± 14.78 109.22 ± 33.44 104.99 ± 62.38
Iters (103) 0.13 ± 0.11 5.71 ± 0.95 0.30 ± 0.20
FEval (102) 21.73 ± 29.41 44.91 ± 12.79 107.46 ± 61.91
time 0.04 ± 0.05 0.50 ± 0.17 2.84 ± 2.75

Max k-Colour (n = 60)
max f (x) 226.0 185.0 201.0
f (x) 222.21 ± 6.23 184.89 ± 0.56 199.77 ± 1.86
Iters (103) 0.30 ± 0.11 31.99 ± 21.65 0.15 ± 0.05
FEval (102) 49.72 ± 57.61 394.66 ± 261.21 88.42 ± 49.12
time 2.09 ± 2.01 5.16 ± 3.44 1.82 ± 1.03

A. Problem 1: Four Peaks:

1) Random Hill Climbing: Increasing the number of
restarts generally improves fitness. Specifically, 100
restarts with 50 or 75 attempts consistently yield bet-
ter solutions, though they do not guarantee optimal
outcomes due to stochastic evaluation and varying
seeds. This effect is observed in the large uncertainty
bounds and erratic means.

2) Simulated Annealing: The temperature significantly
impacts the SA algorithm, demonstrating consid-
erable sensitivity to the initial starting point. The
lower temperature, 10◦C, accelerates finding the
optimal region. High temperatures prolong conver-

5

gence, increasing computation costs. Constant cool-
ing schedules exhibit consistent convergence slopes,
with the potential for faster convergence through
optimized cooling schedules.

3) Genetic Algorithm: Population size significantly im-
pacts performance; a size of 100 appears highly
effective. However, the mutation rate impact is less
clear, but a rate of 0.50 shows quick convergence
with narrower uncertainty. Therefore, the problem
definition favours a slightly more stochastic ap-
proach with a larger population size.

B. Problem 2: Max k-Colour:

1) Random Hill Climbing: Performance variations with
restarts and attempts are minimal. Increased at-
tempts improve performance but at increased com-
putational cost. The current problem structure likely
contains many local minima of similar magnitude.
Therefore, random exploration effectively finds rea-
sonably good solutions in this problem’s structure.

2) Simulated Annealing: Again, lower initial tempera-
tures facilitate quicker convergence. Interestingly, all
temperatures converge to the same optimal region.
As witnessed before, high temperatures risk delayed
convergence without identifying better solutions,
requiring careful temperature management and se-
lection to avoid unnecessary evaluations.

3) Genetic Algorithm: Similar to RHC, optimal parame-
ter differentiation is less clear. Again, a population
size of 100 consistently achieves faster convergence.
However, in this problem, a lower mutation rate
is favourable, indicating the problem’s structured
nature favours GA crossover methodologies over a
more random beam searching approach.

VII. OPTIMIZER EFFICIENCY COMPARISON

After evaluating the general complexity and individ-
ual performance characteristics, a general efficiency per-
formance comparison is conducted for each optimizer.
To determine which optimizer performs most efficiently
for each problem, a detailed analysis of inner function
evaluations and wall-clock time is conducted. Figure 3
summarizes the results for each problem across all ex-
plored problem sizes. Two key metrics are considered:
pure evaluation time and time-normalized function eval-
uations. These metrics provide a good understanding
of solution complexity and overall optimizer efficiency.
Note that these metrics are averaged across all seeded
evaluations.

For the Four Peaks problem, both RHC and SA showed
similar function evaluations per second. However, GA
has a much lower rate. This does not translate to faster
evaluation times, as GA is approximately ten times
slower than the other two optimizers. In the Max k-Colour
problem, SA is the least efficient optimizer. The number
of function evaluations for SA is significantly higher
than for RHC and GA, resulting in a severe penalty in
evaluation time. In this particular problem, GA proves to

Fig. 3: Normalized function evaluation and wall-clock
time comparison for varying complexity

be the most efficient. Possible reasons for this efficiency
difference relate to the specific problem characteristics.

In the Four Peaks problem, the potentially large popu-
lation size and relatively simple search space made GA
less effective compared to the more randomized RHC.
For the Max k-Colour problem, the presence of many
local optima meant that while SA could quickly find
improvements, it eventually became stuck, leading to
excessive iterations. Conversely, GA was able to capture
the problem structure better and slowly evolve towards
a good solution.

VIII. NEURAL NETWORK

Having investigated the effectiveness of various opti-
mizers on discrete academic benchmarks, the focus shifts
to evaluating random optimization algorithms for tun-
ing neural network weights, replacing the conventional
backpropagation (BP) algorithm. This study explores
whether RHC, SA, and GA can be possible alternatives
to BP for training neural networks.

A. Dataset Introduction

The performance of these optimizers is assessed us-
ing the Wine Quality dataset, a challenging real-world
source from the Kaggle repository. This dataset consists
of 1,143 instances and 11 features related to the Por-
tuguese ’Vinho Verde’ wine. It focuses on classifying
wine quality based on physico-chemical properties such
as acidity and pH levels, with quality scores ranging
from 3 (poor) to 8 (excellent) [6]. This dataset presents
notable challenges for model comparison due to its
multi-class nature with ordered quality scores and signif-
icant class imbalance. It requires specialized evaluation
metrics beyond accuracy. Additionally, the subjective
nature of wine classification introduces a high degree
of noise into the metric, making the problem even more

6

challenging to converge to a global optimal solution as
many local optima are present.

B. General Methodology

This study employs a methodology similar to that
demonstrated in [1], implementing a hybrid train-
ing strategy that combines data standardization, cross-
validation methodologies, and hold-out test evaluations
to ensure a reliable assessment of each algorithm’s per-
formance. Given the extreme imbalance characteristics of
the dataset, a stratified sampling approach is employed
throughout the training and cross-validation procedures
to preserve class distribution within the testing sets. The
dataset target distributions for the train and test splits
are shown in Figure 4.

Fig. 4: Class distribution between train (blue) and test
(green) datasets

To ensure a fair comparison between the various opti-
mizers, the optimal neural network model previously de-
termined using backpropagation from study [1] is used
as a benchmark. However, the analysis is conducted with
a different Python library, PyPerch [3], as it contains
the methods necessary to apply random optimizers and
backpropagation concurrently. A 5-fold cross-validation
approach is applied within the training set to main-
tain consistency and comparability to re-optimize hyper-
parameters for optimal backpropagation performance.
The baseline modelling parameters are then fixed for the
remaining methods. A secondary grid-search evaluation
is conducted to explore and evaluate the key hyper-
parameters of the various optimizers based on the previ-
ous learnings. Parameter configurations vary depending
on the algorithm, as summarized in Table III. It should be
noted that other parameters and ranges could be tuned.
However, not all configurations and parameters could
be optimized due to the limited time and computing
resources.

IX. NEURAL NETWORK ANALYSIS

The optimal hyper-parameter results for the baseline
model and associated random optimizers are summa-
rized in Table IV. Comparing these results with [1]
indicates slight variations in network structure, though

TABLE III: Summary of grid search hyper-parameters

Hyperparameter Value
BP

Learning Rate {0.1, 0.2}
Layer Size {2, 3}

Number Nodes {10, 20}
Epochs {100, 1000, 3000}

Activation Functions {Tanh, Relu}
Optimizer {Adam, SGD}

RHC
Step size {0.1, 0.2, 0.3}

SA
Step size {0.1, 0.2}

Initial Temperature {100, 1000, 10,000}
Decay rate {0.90, 0.99}

GA
Population size {50, 100, 200}
Mutation size {10, 25, 50}

Mate size {30}

activation, learning rate, and optimization algorithms re-
main consistent. These differences may stem from initial
sampling or slight code variations. However, the close
overlap provides confidence in a fair comparison of the
Wine dataset.

TABLE IV: Grid search hyper-parameter results

Baseline (BP) Neural Network
{Node (Layer): [20, 20](2), Acti: Tanh, Epoch: 3000, Opti: Adam}

Random Optimizers
RHC: {Step size: 0.2}
SA: {Step size: 0.1, Initial Temp: 10,000◦C, Decay rate: 0.99}
GA: {Population size: 100, Mutation size: 50, Mate size: 30}

X. NEURAL NETWORK LOSS CURVE

Analyzing internal training loss directly is crucial for
evaluating optimizer performance, highlighting optimal
epochs for early stopping and achieving low validation
errors. Additionally, comparing loss curves is valuable
to determine if different optimizers reach similar conver-
gence levels. Figures Figs. 5a–5d illustrate training and
validation loss curves, with validation minima marked
by black dashes.

• BP achieves the lowest training loss, indicating its
effectiveness in minimizing errors during training.
However, the irregularities observed suggest pos-
sible challenges in stabilizing convergence, hinting
at opportunities for fine-tuning learning rates and
regularization techniques to avoid fluctuations and
potentially improve performance further.

• RHC shows smoother loss curves compared to BP
but begins to overfit around 700 epochs, where the
validation loss diverges from the training loss. This
early overfitting suggests limitations in its ability to
generalize to unseen data without further adjust-
ments or regularization.

• SA demonstrates robust performance, maintain-
ing low validation loss up to approximately 2075
epochs. The gradual increase in validation loss be-
yond this point indicates the optimizer’s resilience
to overfitting over extended training periods, sug-
gesting that continued training could yield further
improvements in model generalization.

7

(a) BP: Loss (b) RHC: Loss (c) SA: Loss (d) GA: Loss

(e) BP: Weights (f) RHC: Weights (g) SA: Weights (h) GA: Weights

Fig. 5: Neural Network Epoch Loss Curves and output weights for varying optimizers

• In contrast, GA shows the highest validation loss
early in training, indicating sub-optimal conver-
gence compared to other optimizers. The rapid
increase in validation loss suggests early overfit-
ting tendencies, highlighting the need for revisiting
hyper-parameter settings or exploring alternative
optimization strategies to the specific characteristics
of the problem domain.

These findings show the importance of selecting an
appropriate optimizer tailored to the neural network
architecture and dataset characteristics. BP’s low training
loss despite irregularities suggests potential for further
refinement. RHC and GA indicate signs of early over-
fitting, thus requiring careful parameter tuning to en-
hance generalization. SA’s sustained performance over
extended epochs indicates its effectiveness in prolonged
training scenarios.

A. Neural Network Weight Analysis

Examining optimized internal neural network weights at
the output layer provides another valuable comparison
metric. Figure Figs. 5e–5h show distinct weight distri-
butions for each optimizer, indicating different minima
despite similar obtained loss values for most optimizers.

Fig. 6: Neural Network weight distributions comparison

To quantify the degree of similarity between these
weights, the chi-squared (χ2) distance metric [9] is em-
ployed. This statistical measure is used to compare
the dissimilarity between two probability distributions.
Lower values of χ2 indicate more similar distributions.
Using BP as a baseline, the scores were obtained for each
optimizer, summarized in Figure 6. The following key
takeaways are observed:

• The RHC optimizer exhibits the smallest distance
(χ2 = 0.78) compared to the BP algorithm. This
indicates that RHC produces weight distributions
most similar to those of BP, suggesting that it finds
a similar minimum in the optimization landscape.

• Both SA and GA have higher distances (χ2 =
1.25 and χ2 = 1.46, respectively) compared to BP.
This implies that while their weight distributions
are somewhat similar to each other, they differ more
significantly from those produced by BP.

Despite the differences in the chi-squared distances,
the overlap of the weight distributions for all optimizers
is notable. This overlap indicates that all optimizers find
solutions within a similar range of the weight space,
even though the exact distributions vary, thus indicating
moderately similar convergence.

B. Discrete versus Continuous Weights

The weights in a neural network are continuous and real-
valued, requiring special considerations when applying
random optimization algorithms. Unlike discrete do-
mains, the continuous nature of neural network weights
results in a much larger real-valued solution space. BP
efficiently updates weights using gradient information,
making it highly effective for smooth, differentiable loss
surfaces. Conversely, random optimization algorithms
do not use gradients and rely on stochastic processes,
which makes them robust in non-differentiable or irregu-

8

lar landscapes but typically slower to converge. They can
better escape local minima through probabilistic accep-
tance of worse solutions (SA) and crossover/mutation
(GA). BP’s efficiency and speed often make it preferable
for large datasets and complex models. However, ran-
dom optimization algorithms are valuable in scenarios
where gradients are not well-defined (avoids vanishing
gradients [10]) or the loss landscape is highly irregular.

XI. NEURAL NETWORK OPTIMIZER COMPARISON

Table V presents the final test set evaluated results
for the Wine Dataset using BP, RHC, SA, and GA. The
performance metrics considered are Accuracy, Precision,
Recall, F1-score, the number of Epochs, and Training
Time (in seconds).

TABLE V: Final test set evaluated results

Wine Dataset
Metrics BP RHC SA GA

Accuracy 0.651 0.650 0.651 0.611
Precision 0.620 0.618 0.616 0.580

Recall 0.651 0.651 0.651 0.611
F1-score 0.635 0.630 0.633 0.591
Epochs 800 700 2075 960

Train Time (s) 48.96 77.87 213.23 2472.60
Epoch/Time 16.33 9.00 9.73 0.40

The following general outcomes are observed based
on the overall performance:

• BP demonstrates the highest precision and F1-score
while matching SA and RHC in accuracy and recall.
It also has the fastest training time, making it the
most efficient optimizer for the Wine Dataset due to
its direct gradient-based optimization approach.

• RHC performs similarly to BP in accuracy and recall
but lags in precision and F1-score. It requires more
training time than BP but fewer epochs, indicating
longer epochs per session. RHC is cost-effective for
simpler problem landscapes but may struggle with
more complex ones due to its stochastic nature.

• SA achieves accuracy and recall comparable to BP
and RHC but has slightly lower precision and F1-
score. It requires significantly more training time
and epochs however function evaluation time is
similar to RHC’s. SA is suitable for problems with
multiple local minima but needs careful tuning of
the cooling schedule for optimal performance.

• GA shows the worst performance across all metrics,
with the lowest accuracy, precision, recall, and F1-
score. It has the longest training time, highlighting
its low efficiency and high cost. The GA effective-
ness depends heavily on parameter tuning, making
it less suitable for the Wine Dataset in its current
configuration due to high computing demands.

XII. CONCLUSION

In conclusion, not only does the performance of each
optimizer vary, but their efficiency can also drastically

TABLE VI: Model result and hypothesis summary

Models Pros Cons
RHC ✓ Fastest optimizer in terms

of wall-clock times.
• Minimal parameter tuning

required.
× Effective for small or

moderately sized
problems. (̸H: Achieves
better prediction
performance on NN
problem than GA)

✓ Prone to getting stuck in
local minima.

✓ Not suitable for complex
and structured problems.

• Stochastic nature means no
guarantee of finding the
global optimum.

SA ✓ Escapes local optima by ac-
cepting worse solutions ini-
tially.

✓ Performs well on problems
with many local minima
(FP and NN).

• Highly flexible with a
tunable temperature and
cooling schedule (̸H: worse
than MLP on binary class).

× Computationally expensive
with many iterations. (̸H:
Worse performance on
structured problems than
RHC and GA.

• Sensitive to cooling
schedule; requires careful
tuning.

• Slower overall convergence
compared to RHC and BP.

GA × Robust for large complex
problems with many local
optima. (̸H: Lowest NN
prediction performance)

• Population diversity helps
explore the space
effectively.

× Capable of capturing
structural patterns over
iterations (̸H: Lower
prediction performance
than RHC)

✓ Most computationally in-
tensive with the longest
training time.

• Requires significant param-
eter tuning for population
size and mutation rate.

change depending on the particular problem. This obser-
vation aligns with the no-free-lunch theorem [8], which
suggests that no single optimizer is best for all problems.
A general optimizer summary and hypothesis confirma-
tion (✓) or rejection (×) is indicated in Table VI.

This analysis demonstrates the effectiveness of ran-
dom search approaches in navigating non-differentiable,
discontinuous, or irregular optimization landscapes.
However, it is crucial to appropriately tune individual
optimizers and compare multiple options to identify
the optimal performer for each problem. By carefully
selecting and tuning optimizers, we can achieve better
solutions tailored to each problem’s unique characteris-
tics.

XIII. RESOURCES

[1] CS7641 A1: Supervised Learning. Odendaal, K. (2024).
[2] API Reference. ml-rose-hiive. Rollings, A., Hays, G. https:

//github.com/hiive/mlrose.
[3] API Reference. pyperch. Mansfield, J., https://github.com/

jlm429/pyperch.
[4] MIMIC: Finding optima by estimating probability densities. De

Bonet, J., Isbell, C., Viola, P. (1996).
[5] Machine Learning LaTeX Template. Nakamura, K. (2023).
[6] Wine Quality Dataset. Kaggle. https://www.kaggle.com/

datasets/yasserh/wine-quality-dataset.
[7] Clever Algorithms: Nature-Inspired Programming Recipes.

Brownlee, J. 1st ed, (2012).
[8] Machine Learning. Mitchell, T. M. vol. 1, (1997).
[9] Hands-on machine learning with Scikit-Learn, Keras and Tensor-

Flow: concepts, tools, and techniques to build intelligent systems.
Geron, A. 2nd ed, (2019).

[10] Artificial Intelligence: A modern approach. Russel, S., Norivg,
P. 4th ed, (2021).

https://github.com/hiive/mlrose
https://github.com/hiive/mlrose
https://github.com/jlm429/pyperch
https://github.com/jlm429/pyperch
https://www.kaggle.com/datasets/yasserh/wine-quality-dataset
https://www.kaggle.com/datasets/yasserh/wine-quality-dataset

	Introduction
	Initial Hypothesis:

	Random Optimizers
	Random Hill Climbing:
	Simulated Annealing:
	Genetic Algorithm:

	Optimization Problems
	FourPeaks
	Max k-Colour

	Optimizer Analysis
	Optimizer Complexity Curves
	Problem 1: Four Peaks:
	Problem 2: Max K-Colours:

	Optimizer Individual Performance Curves
	Problem 1: Four Peaks:
	Problem 2: Max k-Colour:

	Optimizer Efficiency Comparison
	Neural Network
	Dataset Introduction
	General Methodology

	Neural Network Analysis
	Neural Network Loss Curve
	Neural Network Weight Analysis
	Discrete versus Continuous Weights

	Neural Network Optimizer Comparison
	Conclusion
	Resources
	

