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I. INTRODUCTION

In the past hydrodynamic characteristics of planing vessels
have been studied with many experiments in towing tanks, from
which there have been attempts to develop analytical relations
for the approximation of hydrodynamic forces acting on planing
vessels such as Savitsky’s Method. However in the last decade
CFD studies have become more relevant in the design process
of planning vessels and CFD is even becoming a substitute for
towing tank tests. Therefore multiple methods have been devel-
oped of which some are based on simplification such as reducing
the 3D problem to the solution of a series of 2D potential flow
problems on the sections. This 2D to 3D transformation can
simply be related using a time-length domain relation as seen in
formulation (1).

x = U · t (1)

A visual representation of the this formulation can be seen in fig-
ure (1), where a dropping wedge in the time domain is converted
to the time rate of change over the length of the planing hull.

Figure 1: General x-t visual representation
To compare the validity and differences between CFD and

analytical methods, this paper will review the results of the hy-
drodynamic calculations of a planing vessel with a CFD method,
Savinsky’s Method and finally Von Karman’s Method.

II. GEOMETRY

i. Savitsky’s Method
To determine the key parameters of the vessel geometry, Sav-

itsky’s hydrodynamic design of planing hulls was consulted [2].
Savitsky suggested that the hydrodynamic characteristics of pris-
matic planing surfaces were a close representation of planing
craft. Using this approximation, key formulations and empirical
results were combined to describe the drag, equilibrium trim, and
wetted keel length, and depth of transom.

The main advantage of implementing Savitsky’s methods is
due to the relative computational ease these formulations are
able to provide. It also offers a easy validation check for the

lift and drag forces. Thus, using the computational general case
procedure for hydrodynamic performance, the key initial design
parameters for the study were determined. These key parameters
can be seen labeled in figure (2).

Figure 2: Planing vessel general schematic and parameters [2]
Where, the parameters of interest are; τ , the trim angle of the

keel. d, draft of the keel at the transom. Lk, the wetted keel
length. β, the inclined dead rise angle of the hull. b, the beam
of the craft. To remain consistent with Savitksy, the same vessel
dimensions were implemented and analyzed. This will will not
only allow for the determination of the key wedge parameters, it
will also give a valid analytical comparison result to check with
the final CFD results. Therefore a resulting output summary of
all parameters can be seen in table 1.

Table 1: Summary of vessel initial parameters

Initial Vessel Parameters
Length, L m 18.00
Beam, b m 4.00
DR, β ° 15.00
Velocity, U m/s 15.42
Froudeb, Fnb - 2.46
trim, τ ° 4.00
Wet Keel, Lk m 14.92
Keel depth, d m 1.05
Lift Force, FL N 2.91e5
Drag Force, FD N 2.05e4

All relevant formulations and empirical results can be found in
[2]. However, one key parameter that requires further discussion
is the Froude number. Since the planing hull does not typically
have a constant water line length due to lift, the traditional repre-
sentation of the Froude number must be reconsidered. Therefore,
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the implementation of a Froude with respect to the beam can be
substituted instead.

Fnb =
U√
g · b

(2)

This form of the the Froude number is still capable of main-
taining its dimensionless advantage. It should be noted that the
empirical equations of Savitsky for Lk are only valid for a speed
coefficient of two or greater (Fnb > 2), deadrise less than 15 de-
grees (β < 15), and trim less than or equal to 4 degrees (t ≤ 4°).

ii. Mesh Generation
Having determined the full parameters of the vessel in question,

a conversion from the 3-dimensional space can be made to the
2-dimensional wedge space. This can be simply be done by
changing the orientation of the parameters through use of the
trim angle and trigonometry.Thus, the required start height, end
depth, and drop velocity can be determined using the following
relations,

Hdrop =(L− Lk) · tan(τ) (3)
ddrop =d · cos(τ) (4)
Vdrop =U · sin(τ) (5)

From these parameters the time required for the wedge to fall
through the space and fluid can be determined respectively,

timpact =Hdrop/Vdrop (6)
tfluid =ddrop/Vdrop (7)

A detailed summary of these wedge parameters can be seen in
table 2

Table 2: Summary of wedge initial parameters

Wedge Parameters
Height above FS, Hair m 0.21
Heigth below FS, dfluid m 1.05
Drop velocity, Vdrop m/s 1.08
Total drop time, tT s 1.16
Impact time, timpact s 0.19
Fluid time, tfluid s 0.97

iii. Mesh Domain Determination
With these complete set of parameters the full domain of Analy-

sis can be completed. To save computational demand a symmetric
body will be evaluated.

The domain will be represented as a function of the vessels
beam. This will allow for a systematic approach in determining
the domain size. Ultimately due to the implemented boundary
conditions of the domain for the fluid and air cannot be too small.
If the fluid does not have sufficient room to displace itself, the
interaction between the wedge, air, and fluid can greatly skew the
results. This can have a drastic effect on the pressure experienced
on the wedge which in turn will inflate the expected force values.
However, if the domain is too large, the excess elements can
greatly increase the required computational demand. Thus, a
fine medium between the two is required. This was essentially
achieved through a trial and error methodology.

Width = 3 · b (8)
Height = 3 · b (9)

Area = 30.92m2

Where the domain height is decomposed into two equally spaced
areas for both the fluid and air regions respectively. As such, the
domain area can be determined as the total square domain minus
the area related to the wedge.

iv. Parabolic Deadrise Representation
The initial parameters are established for a constant deadrise

of 15 °. However, this case with a constant angle has been
extensively evaluated in previous wedge/planing vessel research.
Therefore, the implementation of a parabolic representation of
the dead rise angle is instead considered. To maintain the validity
of the determined vessel parameters, this constantly changing
dead rise has an averaged angle of 15 °.

Ypoly = −0.020704 · b2 + 0.311407 · b (10)

To determine the above polynomial representation, it was cru-
cial that the polynomial curve can be simply represented as an
interpolated spline function. This is due to the mesh creation in
general. The meshing software, GMSH, is only able to represent
curvatures using point intersecting interpolated splines. There-
fore, a comparison between the 2nd order polynomial and the
interpolated spline can be seen in figure (3). From this figure it
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Figure 3: Parabolic curve comparison

can be seen that using 5 points, the spline and the polynomial
function have very good similarity between the two.Furthermore,
the relative error between the curves show that the maximum
deviation is on the order of 10−10. Thus, equation (10) will
confidently be used to represent the wedge geometry.

v. Geometrical Similarity
To ensure that the meshes were geometrically similar, and

element scale factor was implemented. A factor of
√

2 was used.
implementing this factor allowed for 6 different meshes ranging
from the coarsest mesh with 3,649 elements to the most fine with
102,277. The meshes were arbitrarily chosen so that the final
mesh size ranged close to the 100,000 element marker. This value
was chosen to have a reasonable computationally demanding
solution, allowing for a modest final run time. A summary of all
the meshes can be found in table 3.

Where the average element size can be determined using the
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Table 3: Summary of wedge mesh parameters

Triangular Mesh Properties
Mesh Element # Element Size
h6 3649 0.0921
h5 6918 0.0669
h4 13510 0.0478
h3 26303 0.0343
h2 51133 0.0246
h1 102277 0.0174

approximation,

hi =

√
Area

Elementi
(11)

It should be noted however, that while the meshes were refined
using a scaling factor, not all triangular mesh elements were of the
same size. During the meshing procedure, mesh elements below
the wedge were manual refined by a further factor of 20. This was
to ensure that the physics was properly captured in this region,
allowing for a more accurate analysis of the hydrodynamic forces
occurring on the wedge. From figure (4), a comparison between
the the coarsest and finest meshes can be clearly seen.

III. CFD AND VISUALIZATION

i. Parameter Selection
Before the wedge program can be implemented, the initial

inputs must be established to ensure that the numerical results
and simulations are accurately reflected. This is achieved directly
through the modification and justification of the solver type,
artificial diffusion, CFL number, and time stepping.

1. ODE-Solver: The solver type plays a crucial role in the
accuracy and stability of the numerics. During the solution
determination phase three different solvers where ultimately
tested and analyzed. The ode21; Implicit Backwards Euler
and the ode32, implicit generalized-alpha. From the results
it was quickly determined that ode45 gave very oscillatory
results early in the initialization phase as compared to the
other solutions. However, the results themselves were of an
increased 2nd order of accuracy. Whereas the ode21 gave
an inherently stable solution, but suffered from a 1st order
accurate result. Ultimately, it was determined for the higher
mesh sizes, stability will be of crucial importance. As such
the backward Euler was implemented for all meshes.

2. Level Set and Navier-Stokes Artificial Diffusion: These pa-
rameters consist of added diffusion terms required to add sta-
bilization criteria to the Pressure Stabilized Petrov-Galerkin
method. The residual based artificial diffusion increases
accuracy however, as consequence makes solving the equa-
tions more difficult. Whereas, inconsistent diffusion aids
with the solver performance. Too much diffusion in the
system can lead to non-physical solutions. Therefore, these
parameters must be kept as low as possible. While there
is no explicitly theory to exactly setting these parameters,
a trial and error methodology was implemented to achieve
smooth and accurate results.

3. CFL number and time-step gain: The CFL relates the ratio
of velocities between how many elements a particle travels

Figure 4: Mesh element comparison Top: 3,649 Bottom:
102,277

per time-step.

CFL = max

(
|u| ·∆t
h

)
xεΩ

(12)

For implicit methods the time-step is limited in terms of
accuracy for very large values. Thus the CFL target value
should range between 1-2 for an optimal efficiency. To
ensure this CFL target can be achieved for each target, the
time-step must constantly be adjusted. This is done through
a time-step gain parameter.

∆tn+1 = ∆tn
(
cfl − target

cfl

)dt−gain
(13)

This gain controls the responsiveness to which the CFL
changes and ranges between 0 and 1. Where 0 is no change
and 1 is considered instantaneous adaptation. This in many
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cases is known as a dead-beat controller and is too respon-
sive. Therefore, a gain between these parameters was estab-
lished to ensure a sound medium in terms of adaptivity.

Using these justifications, along with extensive trial and error the
following summary of the input wedge parameters used in the
CFD analysis can be seen in table 4.

Table 4: Summary of wedge input parameters

Wedge Program Input Parameters
Parameter Value Parameter Value

refine 0 newton-tolerance 0.001
order 1 newton-itermax 10
ode-solver 21 velocity 1.08
t-final 1.16 viscosity 0
cfl-target 1.1 LS-width 3
dt-gain 0.5 LS-ad-rb 0.4
time-step 0.01 LS-ad-ic 0.3
dt-min 0.0001 NS-ad-rb 0.4
dt-max 1 NS-ad-ic 0.1
lead 20 alpha-reg 100
linear 0.001 dt-vis 0.01
linear-itermax 500

ii. Parameter Uncertainties
It should be noted that while it is believed these parameters

produce an accurate representation of the corresponding wedge
physics, other parameters may have allowed for either a more
efficient and/or accurate solution.

The first to mention is the order parameter. This establishes
the gluing form between the Galerkin shape functions. The one
represents a first order linear function gluing method. This is one
of the most basic methods and resolves straight domains without
any discontinuities between each element. However, this method
is inherently incorrect in the following wedge analysis. The rea-
son for this is because the instead of a linear deadrise angle, a
polynomial is instead used. Therefore, it can be expected that
there maybe be several kinks between the elements in this region
which can lead to slight inaccuracies and/or difficulties during
the numeric solving. Thus, a better representation of the glue
elements would be to use a 2nd order poly function. In the fol-
lowing analysis this was not used due to the extra computational
demand required by the system to solve these sets of parameters.
However, as mesh size decreases, this problem should become
less of an issue.

Another parameter that could be further investigated in the
future is the lead time. This value establishes a artificial time
amount for the solution to initialize and stabilize the numerical
solution. However, if lead time is too long, then the system will
unnecessarily increase the required amount of calculations. this
in turn increases the computational demand and thus the time for
each simulation to complete. As such, it might be more efficient
to shrink the lead time to the shortest possible duration for the
much larger mesh sizes.

Finally, for the smaller mesh sizes, it was a noticed that the
iterations of the solvers were never exceeded. However, when
the mesh size increased the demand and complexity of the nu-
merics increased resulting in certain periods of non-convergence.
While the general physics of the problem converged adequately
the other parameters involving the level-set diffusion had more

difficulty. As such it can be assumed that additional study should
be invested into the optimal diffusion settings which will provide
an optimal solution for most all mesh sizes. This may also be ac-
companied through a look into the solver tolerance and iteration
margins,which were not changed during the course of the study.

iii. Computational Processing
Having established all necessary criteria and parameters, the

wedge program could be implemented for each associated mesh
family. For the four coarsest meshes, a computer with with an
Intel(R) i7 processor operating on 4 Cores was used to run each
simulation. The results were generally completed within an ac-
ceptable time range of 25 minutes (3649 elements) to 3 hours
(26,303 elements). However, any mesh size smaller than this
would take an extraordinary long time. As such, a TU Delft
cluster was applied to the final two meshes for the sake of com-
putational time relief. Each job had access to 12 cores, thus
allowing for an approximate 3x faster computational speed.

iv. Wedge Analysis
For each result, the open source visualization tool, visit, was

implemented to organize and analyze the data in a functional
form. As a result, the wedge simulation computations were
visually represented for the most refined mesh size. Figures
containing the fluid boundary, pressure, velocity magnitude and
velocity vectors were analyzed independently can be seen in
figures (5), (6), (7), and (8) respectively.

From the flow boundary solution, a clear representation of the
fluids and their division can be seen. Where, blue indicates the
air and red is the fluid. In figure (5), the fluid pile-up can clearly
be seen in the zoomed region. This pile-up is generally quite
similar to other wedge drop experiment results. In the final time
frame it can be seen that the the fluid begins to fill a cavity near
the wedge. This is a nice indication that the use of spray rails for
such geometries are quite necessary. If the fluid were to make
contact with the hull, an increased wetted surface resulting in
more added resistance would be of consequence.

In the pressure solution, figure (6), a high pressure region
travels across the wedge bottom width as the geometry begins to
submerge into the fluid. Once the geometry is fully submerged,
the interaction area is at its maximum. Therefore, the average
pressure on that area decreases which reduces the overall force
experienced. As such, the pressure begins to redistribute itself.
It can be seen from the final time frame that the largest pressure
occurs at the tip of the wedge.

The velocity magnitude can be seen expressed in figure (7).
From this it can be seen that as the wedge moves downwards, the
air moves at very large velocities to vacate the cavity. Interest-
ingly, as the air is pushed out from under the wedge, a vorticity is
formed near the chine. From the final frame it can be seen that the
vortex detaches itself, and slowly begins to dissipate. From the
final frame it can also be seen that air begins to be encapsulated
in the open cavity region. The air here moves at an extraordinary
rate to vacate. This cavity collapsing, is due to the stagnation of
the wake. The fluid moves quite quickly, however, at a certain
point the force of the fluid due to the moving wedge is overcome
by the gravitational force. A this point, the fluid takes the path of
least resistance and collapses on the open region. These observa-
tions are well coupled with figure (8), which shows the velocity
vectors of the fluids. In the final frame, a clear detached vortex
with a large relative velocity can be confirmed. It also highlights
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Figure 5: Flow solution at t = 0.25s & 1.16s (102,277 elements)

that the chine region constantly experiences a large region of flow
velocities.

v. Vertical Force Time Trace
From the output results, a vertical force time trace can be com-

pleted on the 2-dimensional wedge. This force is the resulting
action due to the impact between wedge and fluid at a constant
velocity. The completed time trace for each of the six mesh sizes
can be seen in figure (9). The vertical force results indicate a
good correspondence with with a decrease in mesh size. It can
be seen that the more elements the results begin to overlay one
another as an indication of mesh independence. To understand
whether this criteria has be achieved a Richardson extrapolation
will be performed in Section IV.

From the trace it can be observed that the force lasts for the
entirety of the wedge drop simulation. As such, it must clearly be
indicated that the wedge should not make contact with the fluid
domain until t = 0.19s. This is clearly illustrated with a vertical
line. As such, it is expected that no force should be experienced
on the wedge until that time. However, this is not the case. For

Figure 6: Pressure at t = 0.25s & 1.16s (102,277 elements)

the lowest mesh size there is a clear violation in this result. This
is entirely due to the added viscosity in the system. Since the
elements are large the effects of viscosity, greatly influences the
force experienced well before the wedge enters the fluid. How-
ever, for the more refined meshes the elements are sufficiently
small to neglect these added effects.

Another interesting observation, is a large vertical force peak
presents itself around t = 0.5s. At this point in time the wedge
is nearly completely submerged and the fluid has ramped up
along the wedge geometry. A probable cause for such a large
peak in the force is due to the large required momentum change
necessary to forcibly displace the fluid mass. As the fluid is being
moved, the flow is continually accelerating due to the wedge
impacting the fluid. Once the wedge is fully in contact the flow
does not relatively accelerate much more. This causes a reduction
in the overall vertical force.However, this large force causes the
fluid to continually move upwards. However, once the wedge is
continually submerged, the hydrostatic lifting force is constantly
increasing as the wedge descends. This causes an increasing
vertical force until the end of the simulation.
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Figure 7: Velocity magnitude at t = 0.25s & 1.16s (102,277
elements)

Finally, nearing the end of the simulation the vertical force
begins to spike up. This is a strange increase phenomenon, may
rather be caused by a simulation error rather than a physical one.
The reason for this is because at the end of the simulation, the
cavity next the to wedge is starting to fill. This is causing a large
region where air is being entrapped. Unfortunately, due to the
incompressibility of the fluids, the system may potentially suffer
greatly from this event. This can help to possibly explain the
sudden jump in force near the end of the results.

vi. Force Transformation Routine
To determine the forces acting on the 3-dimensional planing

hull, a conversion routine must be implemented. This procedure
is necessary to transform the vertical forces acting on the 2D
wedge in the time domain to the normal forces acting on the wet
keel length of the hull in the 3D domain. A common practice is
to introduce a non-dimensional length relation with respect to the
beam length. This relation can be seen in equation (14).

λ = Lk/b (14)

Figure 8: Velocity vector at t = 0.25s & 1.16s (102,277 elements)
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Figure 9: Vertical forces in time domain

Where Lk is the completed wet length of the keel and b is the
beam of the vessel. Before a conversion can occur, the relation
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between the time and length domains must be established. This
can be done using the governing x-t relation as seen in equation
(1). Using this formulation and trigonometry, the time when the
wedge drops through the fluid and the corresponding wet length
can be described as,

λ

tfluid
=

U

b · cos(τ)
(15)

The 2D vertical force can then be converted into a 3D Normal
force by integrating this applied load over the time period of the
wedge drop.

F 3D
N (t) =

∫ tfluid

0

F 2D
V (t)dt (16)

Then using the relation seen in equation (15), a conversion can
be made from the time domain to a normal force with respect to
the normalized wetted surface, λ.

F 3D
N (λ) = F 3D

N (t) ·
(

U

b · cos(τ)

)
(17)

This integration routine allows for the determination of the
singular normal force, from which the lift and drag forces can be
determined. These are simply found using the determined trim
angle and trigonometric relations as seen below,

FL(λ) = FN (λ) · cos(τ) (18)
FD(λ) = FN (λ) · sin(τ) (19)

A slightly different procedure is required to determining the
moment acting with respect to the hull transom.

M3D(t) =

∫ tfluid

0

F 2D
V (t) · t · U

cos(τ)
dt (20)

Where, t is the associated time where the distribution is present.
These parameters are multiplied by a length conversion to de-
termine the total moment (clockwise positive around the stern)
acting on the vessel in the time domain. From there the conver-
sion total length conversion is applied to determine the moment
with respect to the keel length.

M3D(λ) = M3D(t) ·
(

U

b · cos(τ)

)
(21)

Both the normal forces and the moments were both determined
in MATLAB using numerical trapezoidal techniques. Having
determined the respective lift, drag, and moments, the non-
dimensional coefficients can be determined for each. This is
achieved using the following relations,

CL(λ) =
FL(λ)

1/2 · ρ · U2 · S(λ)
(22)

CD(λ) =
FD(λ)

1/2 · ρ · U2 · S(λ)
(23)

CM (λ) =
M(λ)

1/2 · ρ · U2 · S(λ) · b
(24)

Where, S(λ) is the wetted surface area as a function of the non-
dimensional length. This relation can simply be approximated as
the total length multiplied by the vessel’s beam.

S(λ) = b · Lk = b2 · λ (25)

From equations (22), (23), and (24) plots of the non-
dimensional coefficients can be made with respect to the non-
dimensionalized wetted keel length. These can be seen in figures
(10), (11), and (12) respectively. It should be noted that both
the force and surface area is varied as a function of length. Ad-
ditionally, a Von Karman comparison is plotted. The analytical
breakdown of these formulations can be seen in Section (V).
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Figure 10: Lift Coefficients as a function of λ
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Figure 11: Drag Coefficients as a function of λ

IV. VERIFICATION AND VALIDATION

i. Richardson Extrapolation
The Richardson Extrapolation technique is a tool which allows

for a formal approach to mesh verification. It produces numerical
evidence on the quality of the mesh refinement. The analyzed
mesh sizes and resulting normal forces corresponding to a wetted
keel length of 14.29m can be seen summarized in table (5).

There are four possible error representation options when per-
forming the extrapolation. These include a linear, quadratic,
monomial, and polynomial representations. Each of the four
assumptions can be used to compute unknown exact coefficients
as well as the final exact solution value. Each of the four assump-
tions will be analyzed and interpreted in relation to one another

7



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

0.025

C
M

(
) 

=
 M

(
)/

(1
/2

 
 v

2
 S

(
) 

b
)

C
M

h6

C
M

h5

C
M

h4

C
M

h3

C
M

h2

C
M

h1

C
M

VK

Figure 12: Moment Coefficents as a function of λ

to identify the best representation.

1. 1st order and 2nd order

The linear and quadratic assumptions have a very similar
forms. Both representations require the determination of
two unknowns. Therefore, these expressions only require
two known φ parameters to determine constant C and the
exact solution φ0. The only difference between the two for-
mulations is the exponent attached to the mesh size. These
formulations for linear and quadratic can both be seen below
respectively,

φh − φ0 =C1 · h (26)

φh − φ0 =C1 · h2 (27)

Where φh is the corresponding solution for each correspond-
ing mesh size, φ0 is the exact solution determined by the
assumption, C is the unknown constant, and h is the respec-
tive mesh size to a fixed exponent.

2. General monomial

The general monomial assumption differs slightly from the
linear and quadratic cases in that instead of an established p,
the order of convergence is unknown. Therefore to success-
fully determine the three unknowns, three input results are
required.

φ− φh = C · hp (28)

However, this case also requires very specific criteria to
be established to confirm the accuracy of the extrapolation.
The first required criteria, is that the mesh ratios must be
Table 5: Richardson extrapolation input parameters

Mesh Element Size hi/h1 FN (kN)
h6 0.0921 5.29 209.8
h5 0.0669 3.85 208.5
h4 0.0478 2.75 206.13
h3 0.0343 1.97 205.9
h2 0.0246 1.41 205.7
h1 0.0174 1.00 205.7

equivalent. This can only done when the meshing is done
based on the same geometric family.

h1

h2
=
h2

h3
(29)

The next condition that is required is to establish whether
monotone convergence occurs. This can be done by taking
the equal grid refinement ratios between the medium/finest
and coarsest/medium grids. If this ratio is greater than 0
then the apparent convergence of the points behave in a
montonic convergent way.

R =
φ1 − φ2

φ2 − φ3
> 0 (30)

If both of these criterion are established, the observed order
of convergence can successfully be calculated using the
following relation,

p =
log(R)

log
(
h1

h2

) (31)

If the order of convergence is determined, the unknown
constant, C, can be easily determined by taking a difference
between two errors which result in the following expression,

C =
φ1 − φ2

hp1 − h
p
2

(32)

Finally, the exact solution for the most refined mesh size
can be determined by implementing the previous solutions,

φ0 = φ1 − C · hp1 (33)

3. Polynomial
The final assumption is through the implementation of a
polynomial representation.

φh − φ0 = C1 · h+ C2 · h2 (34)

Much like the monomial case, this assumption has three
unknown parameters. However, unlike the monomial case
can easily be solved as a linear system of equations using
three known input error formulations for different mesh
sizes.

From each of these assumptions a general error and uncertainty
can be determined for each mesh size. However, generally it is
sufficient to view the smallest determined mesh parameters since
it can be anticipated that this will produce both the smallest error
and uncertainty. These relations can be seen below in equations
(35) and (36) respectively.

E1 =|φ0 − φ1| (35)

U1 =
||φ0 − φ1||
||φ1||

(36)

Using the above assumptions, error, and relative uncertainty
formulations all unknowns can be determined for each case. The
summary of all the results can be seen in table (6).
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Table 6: Richardson extrapolation output parameters

Linear Quadratic Monomial Polynomial
C1 4.9844E3 1.19E5 1.3308E9 -2.863E4
C2 - - - 8.01E5
p 1 2 4.64 1 & 2
φ0 2.06E5 2.06E5 2.06E5 2.06E5
E1 86.7 35.9 9.0 255.7
U1 4.21E-4 1.75E-4 4.36E-5 1.20E-3

ii. Richardson Extrapolation Interpretation
From the extrapolations, a few conclusions can be drawn. The

first is that the monomial has the lowest error and uncertainties.
However, this is not a true reflection on how the whole data set is
fitted. Since the Richardson Extrapolation only considers the last
three data points. From that, it can be seen that the true global
best fit is from the the polynomial assumption. However, this to
has its drawbacks. This extrapolation actually rises slightly at
the end of the extrapolation. This is inherently incorrect, since
the solution should be of the form monotonic convergence. How-
ever, if the first three points are disregarded, then the monomial
assumption is ideal. A least squares approximation would be an
interesting addition to the verification procedure. This technique
incorporates all data and produces a sound procedure to deter-
mine uncertainty of the entire data set. Unfortunately, due to
time constraints, this procedure was skipped but was still deemed
worth mentioning.
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Figure 13: Normalized Richardson extrapolations

V. VON KARMAN ANALYTICAL ANALYSIS

Having verified the results using the Richardson extrapolation,
validation of the results can be done through an analytical com-
parison. To give an indication of the drag and lift in an analytical
way, a calculation is done using the Von Karman theorem which
is based on the momentum theorem that states that the total mo-
mentum of a system will remain constant (neglecting losses) [1].
For this case this means that the original momentum of the vessel
will be distributed between the body and the water during impact.
During this impact the vessel is simulated as a flat plate (width
= 2R) and the apparent mass of the water (Mwater) and vessel
together increases with the amount of fluid contained within half
a cylinder below the vessel, see formula (37). The added mass of
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Figure 14: Time trace of the entry force on the entire vessel

the air above the vessel will be neglected.

mwater = ρ
1

2
πR2 (37)

Furthermore there is also an effect from the buoyancy on the ves-
sel, however this is not taken into account with the Von Karman
theorem for vessels with a small deadrise. During the impact of
the wedge the vertical velocity will remain constant, therefore the
exceeded force on the vessel can be calculated with formula (38).
Substituting the change in mass (formula 39) and the derivative
of the beam (formula 40) gives the final formula (41).

F =
d

dt
(mwater · v) =

·
mwater · v (38)

·
m =ρ π R

dR

dy
v (39)

dR

dy
=

1
dYpoly

dR

=
1

0.0414R+ 0.311
(40)

R, the varying width of the wedge is also a function of time.
Therefore, for each time step radius must be solved using the
polynomial expression. Substituting these formulations, force
can be determined as,

F = π ρ

(
dR

dy

)2

v3
o t (41)

Using formula (41) the time trace of the entry force on the vessel
is calculated with Matlab, using the parameters as determined
earlier with Savitsky (see table (1)) that appoximated a depth of
1.04m and a trim of 4°. The result can be seen in figure (14), that
shows that a maximum force of 39 kN is exerted on the wedge
after t=0.5s when the chine has hit the water. From the time trace
the total normal force on the vessel has been calculated using
numerical trapezoidal integration in Matlab. The lift and drag
have then been determined from the normal force using a similar
force transformation and integration technique as seen in Section
(vi). The results can be seen in figure (15) as a function of the
wetted keel length which gives a drag of 15.01 kN and a lift of
299 kN. Finally the pitching moment using the similar moment
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Figure 15: Lift, drag and pitching moment as a function of the
wetted keel length.

method as the CFD (see formula (20) and (21)) around the stern
has been calculated as a function of the wetted keel length. This
resulted in a pitching moment of 2662 kNm, the full results of
the lift, drag, and moment analytical calculations can be seen in
figure (15).

VI. ANALYTICAL COMPARISONS &
CONCLUSION

Based on the time-trace values determined from the CFD and
Von Karman analysis, a detailed evaluation can be made. The
comparison between these results can be seen in figure (16). It
can initially be seen that the polynomial incorporated Von Kar-
man provides a large over-estimate as compared to the actual
CFD results. The reason for this skewed data, is related to the
actual shape of the wedge and the fluid acceleration along the
bottom. This case assumes that as the wedge moves down the
fluid begins to move up while reaching the same constant drop ve-
locity. This would imply that the wedge geometry is completely
in contact with the fluid at t = 0.5. However, this was clearly
not the case. When the wedge impacts fluid, based on the CFD
results, it confirms that the fluid actually rises at a much faster
rate. This rate corresponds to approximately a 3x larger accel-
eration as compared to the original constant velocity fluid rise.
A Von Karman comparison using this modified acceleration can
be seen in figure (16). The correspondence between this result
very closely correspond to the CFD as opposed to the initial Von
Karman assumptions. A valid explanation of the increased fluid
acceleration can be directly related to the wedge geometry. When
comparing to a constant deadrise angle, the related maximum
results are aligned quite well. However, the peak of the results
shift earlier when the polynomial function is implemented. The
concave shape must act as a sort of ’ramp’ for the fluid to accel-
erate. Therefore, the basic Von Karman assumptions, without
appropriate consideration to the rate of change of the fluid veloc-
ity due to geometry, does not correspond well with the expected
results.

A comparison between the lift, drag and moment forces can
also be evaluated. However, in this case an additional analytical
comparison can be made based on the Savitsky results for lift
and drag. Overall, the results have generally okay correspon-
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Figure 16: Time Trace Comparison

dence, considering that the Von Karman time-trace is greatly
over predicted. It should be noted that, the sensitivity between
lift and drag relations are very large. It can be seen that while the
results for drag are extremely close, the application of converting
through the use of the trim angle relation causes a large dispar-
ity between the lifting results. This sensitivity in turn greatly
effects the moments as well. While the results are not extremely
accurate between the CFD, Von Karman, and Savitsky. It can
be inferred that for quick, conservative results within the same
order of magnitude, these analytical expressions can be extremely
useful.
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Figure 17: Force and Moment Comparisons
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