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Abstract

This work integrates StyleGAN, DragGAN and Principal
Component Analysis (PCA) to enhance the latent space effi-
ciency and controllability of GAN-generated images. Style-
GAN provides a structured latent space, DragGAN enables
intuitive image manipulation, and PCA reduces dimension-
ality and facilitates cross-model alignment for more stream-
lined and interpretable exploration of latent spaces. We
apply our techniques to the Animal Faces High Quality
(AFHQ) dataset, and find that our approach of integrat-
ing PCA-based dimensionality reduction with the Drag-
GAN framework for image manipulation retains perfor-
mance while improving optimization efficiency. Notably, in-
troducing PCA into the latent W+ layers of DragGAN can
consistently reduce the total optimization time while main-
taining good visual quality and even boosting the Structural
Similarity Index Measure (SSIM) of the optimized image,
particularly in shallower latent spaces (W+ layers = 3). We
also demonstrate capability for aligning images generated
by two StyleGAN models trained on similar but distinct data
domains (AFHQ-Dog and AFHQ-Cat), and show that we
can control the latent space of these aligned images to ma-
nipulate the images in an intuitive and interpretable man-
ner. Our findings highlight the possibility for efficient and
interpretable latent space control for a wide range of image
synthesis and editing applications.

1. Introduction
Generative Adversarial Networks (GANs) have signifi-

cantly advanced the field of image synthesis, enabling the
creation of highly realistic images across diverse domains.
However, challenges remain in achieving precise control
over their latent spaces, which are essential for both fine-

grained image manipulation and the interpretability of the
outputs. For example, if one desires to generate an image
with a specific pose or expression, how can this be done?
These challenges become even more pronounced when fine-
tuning GANs on new datasets, as latent space attributes may
not align with desired image modifications.

Our research makes use of StyleGAN2, a framework
known for its high-quality and flexible latent space [5].
To address the challenges of latent space manipulation,
we focus on two main aspects. First, we investigate the
benefits of applying Principle Component Analysis (PCA)
to reduce dimensionality in latent space, to improve the
computational efficiency of applying DragGAN [6], an ad-
vanced but expensive image manipulation methodology. In-
spired by GANSpace [3], PCA reduces the complexity of
latent space, improving computational efficiency, and en-
abling streamlined latent space manipulation both within
and between trained GANs. Second, we explore cross-
model alignment, examining the extent to which the la-
tent space retains semantic coherence between StyleGAN
models trained on related but distinct datasets. This align-
ment aims to facilitate meaningful edits and ensure consis-
tent latent space interpretability across multiple models. If
successful, our approach will enable faster and more intu-
itive image editing, making advanced GAN methodologies
like DragGAN accessible for broader applications in fields
such as graphic design, virtual reality, and medical imaging.
By ensuring semantic coherence between models, our find-
ings could also enhance the transferability of GAN-based
tools, streamlining workflows across diverse datasets and
domains.

1.1. Data

We use the Animal Faces High-Quality (AFHQ) dataset,
which comprises 15,000 high-quality images of cat, dog,
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and wildlife faces (equally distributed) at 512×512 resolu-
tion [2]. For our experiments, we focus on the dog subset
to investigate fine-tuning and PCA improvements in Drag-
GAN, while using both the cat and dog subsets for the cross-
model alignment analysis. This dataset presents a challeng-
ing baseline which is applicable to many real-world prob-
lems due to its multiple domain structure and the diversity
of breeds within each domain, making it an interesting and
fun case for our investigations.

2. Technical Background
2.1. StyleGAN

StyleGAN2, developed by NVIDIA, is a widely used
GAN framework known for its structured and adaptable
latent space, which enables high-quality image synthesis
across various domains [5]. This flexible latent space struc-
ture allows for the adjustment of image style layers and at-
tributes, giving users control over various aspects of gen-
erated images, such as pose, expression, and lighting. The
core of StyleGAN’s success in controllability lies in its W+
latent space, a more expressive extension of the original la-
tent space, where each layer of the generator can receive a
unique latent code. This feature supports disentangled and
precise manipulation of image attributes [8].

Although StyleGAN and its successor’s [4, 5] latent
space allows for improved control, manipulating these la-
tent attributes can be complex and computationally inten-
sive. This has led to the adoption of complementary meth-
ods such as DragGAN to enhance user control over the la-
tent space.

2.2. DragGAN

DragGAN is a technique designed for real-time, inter-
active manipulation of GAN-generated images by optimiz-
ing control points within the latent space. It allows users
to define control points directly on images and apply local-
ized edits, enabling precise adjustments of specific image
attributes and intuitive modification. This achieved through
a motion supervision loss function, which is critical in en-
suring accurate spatial transformations in images. For fur-
ther technical details, refer to [6]. For example, when ap-
plied to GAN-generated dog faces, DragGAN can adjust
the pose of a subject while preserving fine-grained details
like fur texture or facial expressions. This capability is par-
ticularly effective when combined with StyleGAN, offering
a more accessible and intuitive way to control fine-grained
image details.

However, while DragGAN improves control, the com-
putational demands of working with high-dimensional la-
tent spaces, such as the W+ space in StyleGAN, remain
high. To streamline this process and improve efficiency,
we integrate PCA-based dimensionality reduction, which

allows a focus on the most significant variations within the
latent space, potentially reducing computational costs and
enhancing usability.

2.3. Dimensionality Reduction

Principal Component Analysis (PCA) is a dimensional-
ity reduction technique that identifies the major directions
of variance within data, simplifying complex spaces by fo-
cusing on their principal components. PCA measures the
proportion of the dataset’s variance captured by the princi-
pal components in PCA.

This technique has been effectively applied in methods
like GANSpace [3], where PCA reduces the latent space of
GANs to a lower-dimensional, more interpretable represen-
tation. By applying PCA to StyleGAN’s W+ space, we aim
to achieve efficient and disentangled image manipulations.
Dimensionality reduction not only decreases the number of
variables for optimization but also accelerates convergence,
improving the speed and stability of latent space manipu-
lations. This enables us to focus on primary components,
creating a streamlined and interpretable space for precise
and efficient GAN-based image editing.

2.4. Latent Space Alignment

Latent space alignment between GAN models involves
mapping semantic attributes in the models’ latent spaces to
facilitate cross-domain semantic consistency in image ma-
nipulations. For example, if a change is made to an image of
a dog generated by model G1 that is pre-trained on AFHQ
Dog (e.g. by changing its fur color or adding a smile), it
might be a desired effect to replicate that change in an im-
age of a cat generated by model G2 that is pre-trained on
AFHQ-Cat. There are several techniques used for align-
ment of GAN models, including:

• GAN inversion and projection: GAN inversion in-
volves projecting a generated image I1 from the latent
space of one GAN model (G1) into the latent space of
another GAN model (G2). The goal is to find the clos-
est latent vector z2 such that G2(z2) ≈ I1. This aligns
the two models by finding latent representations in one
model that approximate outputs of the other [9].

• Cross-model latent manipulation (with PCA): PCA is
applied to the latent spaces of both G1 and G2 to iden-
tify the most significant latent directions related to key
semantic transformations of interest (e.g., color or pose
change). For cross-model manipulations, these latent
directions are traversed in G1 (e.g., modifying the fur
color of a generated dog image from white to black).
The corresponding change is then made in G2 to ob-
serve if it has a consistent effect (e.g, white cat be-
comes black cat) [3]. This qualitative evaluation of-
fers insight into the semantic consistency between la-
tent space manipulations of cross-domain models and



can be integrated with techniques like DragGAN to
achieve better control and interpretability in tasks like
image synthesis, cross-domain translation and editing.

3. Approach
This work integrates several techniques to achieve pre-

cise and interpretable manipulations within StyleGAN’s la-
tent space. Our approach involves fine-tuning a pre-trained
GAN on the AFHQ-Dog dataset, applying Principal Com-
ponent Analysis (PCA) for dimensionality reduction, and
leveraging the DragGAN framework for efficient latent
space control. The methodology addresses cross-model la-
tent space alignment and introduces robust evaluation met-
rics for analyzing the efficacy of latent manipulations. The
core experimental steps are as follows:

1. PCA Reduction Setup: Configure PCA reduction
with StyleGAN for dimensionality control and model
switching across various datasets.

2. Hyperparameter Tuning: Experimentation with style
layers, principal components, and learning rates to
study their effects on performance and control.

3. Latent Vector Manipulation: Targeted manipulation of
latent vectors, evaluating precision and consistency of
results across different datasets.

The main metrics used in the analysis are:
• Optimization Time: By adjusting hyperparameters

such as learning rate and number of principal compo-
nents, we evaluated and recorded the effects on pro-
cessing time per iteration.

• Motion Loss: Provides insight into convergence be-
havior and stability, especially crucial when incorpo-
rating PCA reduction.

• Number of Iterations (specific to DragGAN): Counted
to quantify the accuracy of direct latent space manipu-
lations.

• The Structural Similarity Index Measure (SSIM):
Evaluates image similarity by considering luminance,
contrast, and structural information. It is a robust
image-specific measure commonly applied to compare
and contrast images, see [7] for more details.

Our implementation was built upon publicly available
StyleGAN [5] and DragGAN [6] repositories. Notable
modifications include: integration of PCA reduction within
the original DragGAN framework, custom modules for
GAN inversion and cross-model latent mapping, and exten-
sions to TensorBoard logging for detailed metrics tracking.

4. GAN Fine-Tuning
As an initial starting point, we utilized the FFHQ (human

faces) StyleGAN pre-trained model as a baseline and fine-
tuned it on the AFHQ Dog dataset. The fine-tuning process
demonstrated the effectiveness of transfer learning in the

StyleGAN framework (see Figure 2 for some images our
model generated).

Models Pretrained kimgs nGPUs FID Wallclock
Baseline scratch 25k 8 19.37 -

ADA scratch 25k 8 7.4 -
ADA FFHQ 145 1 17.39 10h 9m

Table 1: Summary of our fine-tuned StyleGAN2 model
as compared to the results obtained in [5].

To evaluate the benefits of fine-tuning, we compared the
Fréchet Inception Distance (FID) scores of the fine-tuned
model with those of similar models trained from scratch on
the same dataset. The comparison result are summarized in
Table 1. When considering the same hardware (1 GPU), the
fine-tuned model outperformed the Baseline from-scratch
models, achieving improved FID scores. However, when
looking at the equivalent ADA architecture, there is still
much to be gained if we were to continue training on more
images for longer, as evidenced in Figure 1.

Figure 1: Recreated convergence curves for the AFHQ
dataset from scratch as a function of wallclock time,
compared with our fine-tuned implementation using pre-
trained FFHQ model.

The computational time required for a competitive fine-
tuned model remains a key limitation. While a single fine-
tuning took approximately 10 hours on our system, the
best models (ADA), trained from scratch required signifi-
cantly longer, typically 3 days. To ensure a focus on the
interpretability and reproducibility of latent space manipu-
lations, we chose to use NVIDIA’s pre-trained model for the
subsequent experiments, rather than our fine-tuned model.

5. Experiments and Results
All experiments were systematically logged using Ten-

sorBoard [1] to ensure a consistent and rigorous evaluation.
Key metrics, such as optimization time, loss function val-
ues, gradient magnitudes, and handle-point distances were
tracked across iterations to assess the model’s performance
and efficiency under various hyper-parameter configura-
tions



Figure 2: Randomly sampled examples from our fine-
tuned StyleGAN2 generator model.

Table 2 presents the range of hyperparameters evaluated,
including learning rates, the number of PCA components,
and layer-specific settings. The table summarizes the grid
search conducted, ensuring reproducibility and clarity in
experimental design. These variables were chosen to opti-
mize the balance between computational efficiency and im-
age quality.

Hyperparameter Value
Learning Rate {0.1, 0.05, 0.002}
Component Number {64, 128, 256, 512}
W+ Layer Number {3, 6, 12}
Stopping Distance {10 pixels}
Max Iterations {150}
PCA Samples {1000}
Optimizer {AdamW}
Seeds {13, 42, 999}

Table 2: Summary of grid search hyper-parameters

5.1. Latent Space Dimensionality Reduction

Prior to conducting experiments, a PCA model was
applied to the W+ latent space layers of the StyleGAN
model. The cumulative explained variance across the prin-
cipal components was plotted within Figure 3, revealing the
trade-off between dimensionality reduction and total vari-
ance captured for each specific layer.

Retaining fewer components reduces the number of op-
timization parameters, enhancing computational efficiency,
but sacrifices the representation of some variance in the
data. An interesting observation was that the distribution
ratios remained consistent regardless of the number of lay-
ers included in the PCA reduction. While the magnitudes
of variance captured varied, they were proportional to the

Figure 3: Explained variance of each principle compo-
nent within the reduced dimensional W+-space

number of layers included. This suggests that each Style-
GAN layer progressively encodes features, building com-
plexity as training progresses, consistent with the progres-
sive training methodology of StyleGAN.

5.2. DragGAN Experiments

The experimental results provide an overview of the
optimization efficiency and stability achieved with PCA-
enhanced setups across various hyperparameter configura-
tions. Qualitative evaluations using visual comparisons of
generated images are shown in Figure 5, which includes re-
sults for the first three StyleGAN W+ layers with handle
and target points (additional cases in Appendix B). Quan-
titative summaries of global optimization results are pre-
sented in Table 3, with metrics like average optimization
time and loss stability visualized in Figure 4 (complete re-
sults in Appendix C). Notably, observations from initial
tests align closely with extended test results, highlighting
the following insights:

1. The total optimization time per iteration consists of the
optimization-step and point-tracking phases. Surpris-
ingly, regular DragGAN models are slightly faster dur-
ing the optimization-step phase due to the minor over-
head introduced by PCA transformations. However,
PCA models introduce improvement (∼ 4%) in point-
tracking time, despite this phase operating on non-
dimensionalized images. This suggests that PCA indi-
rectly stabilizes the optimization trajectory, improving
initialization or context for point-tracking.

2. At smaller learning rates, regular models show highly
unstable results. While PCA-reduced variants also
show some instability, they are better at avoiding se-
vere impacts and retain a high degree of image quality.
However, many PCA gradients approach instability if
convergence is not quickly achieved.

The integration of PCA dimension reductions into the latent
W+ layers of DragGAN demonstrates a clear trade-off be-
tween computational efficiency and output quality. Based
on the global performance metrics in Table 3, the following



Figure 4: Average (±1σ) performance curves when considering W+ layers= 3 for total optimization time and motion
loss metrics with applied smoothening (α = 0.99) to better observe trends.

conclusions can be drawn:
1. PCA consistently reduces total optimization time

(ttotal) across all configurations, demonstrating its
value in enhancing computational efficiency. The time
savings, particularly in the SSIM-timetotal trade-off,
highlights PCA’s ability to make the optimization pro-
cess faster without significant performance losses.

2. Shallower latent spaces (W+ layers=3 & 6) achieve
higher SSIM values than deeper layers. PCA reduc-
tions are particularly effective for these configurations,
improving efficiency with minimal quality degrada-
tion. Even with smaller PCA components (e.g., 64),
quality remains comparable to the baseline, highlight-
ing PCA’s potential to streamline optimization.

3. PCA-reduced models struggle to converge within the
iteration cap (150) at lower learning rates (0.002), see
Figure 5. This may be due to inherent noise in the
reduced latent space, which complicates optimization
with small step sizes. Higher learning rates stabilize
the process and enable faster convergence, suggesting
that the PCA-reduced loss space may not be entirely
smooth and more suited for larger step sizes.

5.3. Latent Space Alignment

DragGAN offers one possible technique for image syn-
thesis and editing by manipulating the generative latent
space. Controlling the latent space and aligning generative
outputs between different domains could be desirable ex-
tensions to DragGAN or similar frameworks, and requires
specialized optimization techniques to ensure consistency
and quality. Here, we conduct a preliminary exploration of
image editing and latent space alignment techniques, draw-
ing on methods from StyleGAN and GANSpace. Figure 6
shows sample images generated by these methods. Images

nPCA Metric W+ layers = 3

0.002 0.05 0.1

Regular iterationtotal 126 17 44
SSIM/time (10-2) 1.054 5.71 2.323

64 iterationtotal 150 (✗) 40 22
SSIM/time (10-2) 1.054 3.271 5.749

128 iterationtotal 150 (✗) 31 19
SSIM/time (10-2) 1.037 4.238 6.795

256 iterationtotal 150 (✗) 27 19
SSIM/time (10-2) 1.032 4.936 7.009

512 iterationtotal 150 (✗) 22 49
SSIM/time (10-2) 1.010 5.986 2.619

Table 3: Averaged results across 3 different seeds for
different number of principle components (nPCA) and
learning rates. The SSIM/time ratio is used as a mea-
sure of success, where this ratio captures the trade-off
between achieving high image similarity and minimiz-
ing evaluation time. Higher values (green) indicate bet-
ter performance, balancing quality and efficiency. Non-
converged solutions are indicated as (✗).

in the initial (target) domain, AFHQ-Dog, are projected into
the latent space of AFHQ-Cat, to create corresponding cat
images that retains key features of the target dog image,
such as background, pose and fur color, while being visu-
ally recognizable as cats.

Despite the limitation of aligning separate pre-trained
models that do not share a common mapping in W/W+

latent space, the projected images are of high visual quality
and retain many high-level features from the target image.
Future work could involve training a dedicated encoder for
cross-domain image embedding, facilitating more efficient
optimization of the projected images.



Figure 5: Results of PCA applied to W+ layers = 3 dur-
ing the DragGAN process. Rows correspond to different
number of principle components retained and columns
represent the varying learning rates. The blue dots in-
dicate handle points, while the red dots mark the target
points. Note that the left column (learning rate of 0.002)
using PCA did not converge to the goal.

We also explore image editing using interpretable latent
control as implemented in GANSpace [3]. Starting with
a target domain image (dog), we apply edits by moving it
along key latent dimensions identified by PCA. These edits
include changes to the background color, fur color and the
addition of a smile. Because the domains are not mapped
to a common latent space, we attempt alignment via projec-
tion again, by projecting the manipulated dog image into
AFHQ-Cat latent space to produce a corresponding, ma-
nipulated cat image. While this projection captures higher-
level manipulations like background and fur color, it strug-
gles with finer modifications to facial expression and de-
tails. Training a unified model to map both domains to a
shared latent representation could address this limitation.
For example, CycleGANs have demonstrated strong per-
formance in unpaired, cross-domain image translation tasks
[10].

Figure 6: Alignment between two GAN models G1 and
G2, trained on AFHQ-Dog and AFHQ-Cat respectively.
Images are first generated by G1 and then projected
into the W-space of G2 (left). The original G1 images
are manipulated along key latent vectors to induce ed-
its; these manipulated images are subsequently projected
into G2 (right). While high-level edits to background
and color are captured, finer details of facial features and
expressions are not retained by this method.

6. Conclusions and Future Direction
The integration of PCA-based dimensionality reduction

of latent space into the DragGAN image manipulation
framework provides notable efficiency gains while main-
taining a high degree of structural information and preserv-
ing image quality. However, utilizing PCA in the DragGAN
framework also introduces challenges related to optimiza-
tion stability and convergence. Therefore, we suggest the
following future work:

1. Developing hybrid learning rate schedules to balance
initial convergence speed with improved stability dur-
ing local refinements.

2. Conducting an in-depth analysis of the PCA-reduced
loss landscape to better understand how dimensional-
ity reduction influences optimization dynamics.

3. Investigating potential noise in PCA-reduced latent
spaces and its impact on the optimization trajectory.

Overall, our findings suggest that PCA-enhanced work-
flows not only streamline optimization but also allow for
stable and interpretable alignment across diverse latent
spaces, as demonstrated by visually aligning the outputs of
GANs trained on the AFHQ-Dog and AFHQ-Cat datasets.
Tying this capability into PCA-reduced DragGAN could fa-
cilitate image editing tools well suited for cross-domain im-
age synthesis and editing tasks, as well as applications re-
quiring efficient or interpretable latent space navigation in
constrained computational settings.
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A. Work Division
See Table 4.

B. Complete Images
Additional visualizations to further illustrate the results

of applying PCA during the DragGAN process. Figures 7a
and 7b showcase the completed image reconstructions for
two configurations of W+ layers, highlighting the effects
of varying layer depths. These supplementary images offer
a comprehensive view of the consistency and quality of the
generated outputs across different settings.

C. Complete Results
Additional quantitative results to further illustrate the re-

sults of applying PCA during the DragGAN process. Figure

8 and Table 5 present the complete results for all configura-
tions of W+ layers, highlighting and comparing the effects
of varying layer depths for all considered metrics.

D. Available Repository
All code and supplementary materials used in this re-

search are publicly available in our GitHub repository. This
includes scripts for pre-processing, model training, and la-
tent space manipulation, as well as configurations for re-
producing the results. The repository can be accessed
at: https://github.gatech.edu/nkaushik31/
DragGAN-Space.git

https://github.gatech.edu/nkaushik31/DragGAN-Space.git
https://github.gatech.edu/nkaushik31/DragGAN-Space.git


Student Name Contributed Aspects Details
Spencer Halverson GAN Fine-tuning and Analysis Trained the v1 fine-tune of StyleGAN2, using transfer learning to go

from human to dog faces (due to environment issues, training could
not use GPU efficiently so we had to try again). Analyzed metrics and
qualitative results from fine-tuned model and DragGAN.

Neela Kaushik PCA/Alignment Implementation and Analysis Leveraged latent space projection (StyleGAN) and PCA-based editing
(GANSpace) to align images generated from different data domains
(AFHQ-Dog and AFHQ-Cat). Tuned image synthesis and latent space
editing parameters to generate representative results for report.

Kirsten Odendaal Research, DragGAN/PCA Implementation and Analysis Successfully fine-tuned the v2 StyleGAN2 model. Developed and im-
plemented a custom generator class with PCA latent space control of
StyleGAN2 layers, enabling advanced manipulation and precision in
data representation. Conducted extensive experiments including log-
ging of metrics to evaluate and visualize the success of the novel ap-
proach that blended dimensionality reduction techniques with the Drag-
GAN method, delivering results and findings.

Table 4: Contributions of team members.

(a) W+ layers = 6. (b) W+ layers = 12.

Figure 7: Image results of PCA applied during the DragGAN process.



Figure 8: Average (±1σ) performance curves across all tested layers for optimization time, point-tracking time, gradi-
ent magnitude, and motion loss metrics with applied smoothening (α = 0.99).

nPCA Metric W+ layers = 3 W+ layers = 6 W+ layers = 12

0.002 0.05 0.1 0.002 0.05 0.1 0.002 0.05 0.1

Regular
iterationtotal 126 17 44 85 35 55 74 33 95

timetotal 44.652 7.780 18.959 30.226 13.501 22.339 26.552 12.686 41.882
SSIM 0.470 0.444 0.440 0.496 0.384 0.413 0.491 0.401 0.387

SSIM/time (10-2) 1.054 5.710 2.323 1.640 2.845 1.848 1.850 3.157 0.924

64
iterationtotal 150 (✗) 40 22 150 (✗) 43 23 150 (✗) 60 32

timetotal 51.939 14.068 7.929 52.058 15.146 8.348 51.894 21.061 11.494
SSIM 0.547 0.460 0.456 0.552 0.464 0.460 0.551 0.428 0.424

SSIM/time (10-2) 1.054 3.271 5.749 1.061 3.065 5.513 1.063 2.033 3.687

128
iterationtotal 150 (✗) 31 19 150 (✗) 33 27 150 (✗) 47 26

timetotal 52.077 10.973 6.776 52.002 11.569 11.868 52.021 16.652 9.283
SSIM 0.540 0.465 0.460 0.542 0.459 0.448 0.543 0.442 0.442

SSIM/time (10-2) 1.037 4.238 6.795 1.043 3.969 3.776 1.044 2.655 4.760

256
iterationtotal 150 (✗) 27 19 150 (✗) 27 28 150 (✗) 38 23

timetotal 51.895 9.492 6.759 51.984 9.614 12.063 52.018 13.267 8.133
SSIM 0.536 0.469 0.474 0.548 0.466 0.456 0.551 0.464 0.467

SSIM/time (10-2) 1.032 4.936 7.009 1.054 4.852 3.783 1.059 3.501 5.747

512
iterationtotal 150 (✗) 22 49 150 (✗) 23 55 150 (✗) 29 18

timetotal 51.838 7.829 17.425 51.883 8.136 19.695 52.513 10.210 6.460
SSIM 0.524 0.469 0.456 0.548 0.480 0.438 0.540 0.473 0.472

SSIM/time (10-2) 1.010 5.986 2.619 1.056 5.905 2.226 1.027 4.636 7.305

Table 5: Average optimization metrics across 3 different seeds for different nPCA, Learning Rates, and Number of
Layers. Non-converged solutions are indicated as (✗).


