
Git Hash: XXX

DeepRacer: Optimization and Adaption

Kirsten Odendaal
College of Computing
Georgia Institute of Technology

1 Introduction
Recent Reinforcement Learning (RL) advancements have accelerated progress in autonomous driving
and robotics, enabling agents to navigate complex environments using sensory inputs and learned
policies. Autonomous racing is an ideal testbed for RL methods due to its challenging require-
ments for real-time decision-making, precision control, and generalization across varying conditions
and environments. A prominent platform capturing these challenges is AWS DeepRacer, a scaled
autonomous racing vehicle for developing and benchmarking RL algorithms in realistic simulated
conditions (Balaji et al., 2019). The environment provides a compelling scenario to evaluate how
learned control policies transfer across different simulation scenarios, a key step towards bridging
gaps between simulated training and real-world applications (Balaji & Etzioni, 2020).

In this study, we utilize the AWS DeepRacer environment to develop and evaluate a robust au-
tonomous racing agent capable of generalizing across multiple track layouts (reInvent2019 wide,
reInvent2019 track, and New York Track) and diverse racing conditions: time trials, obstacle avoid-
ance scenarios (six static obstacles), and head-to-head competitions (three competing vehicles). We
employ Proximal Policy Optimization (PPO), specifically the clipped variant for stable policy up-
dates, combined with Convolutional Neural Networks (CNNs) to process sensory inputs from stereo
camera and LIDAR sensors. While the trained agent demonstrates effective generalization across
tracks in the time-trial setting, our results reveal significant challenges in transferring this perfor-
mance to scenarios involving obstacles or dynamic opponents, highlighting a critical generalization
gap dependent on task complexity.

2 Technical Background
In this section, we briefly review the core RL methodologies used in our experiments: Proximal Policy
Optimization (PPO) for policy learning and Convolutional Neural Networks (CNNs) for processing
high-dimensional sensory inputs in autonomous racing.

2.1 Proximal Policy Optimization (Clipped)

Proximal Policy Optimization (PPO) is a widely-adopted policy gradient method designed to im-
prove the stability and reliability of policy updates (Schulman et al., 2017). PPO constrains policy
updates to a region near the current policy, preventing excessively large updates that could desta-
bilize learning by optimizing a clipped surrogate objective function:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

)]
where rt(θ) = πθ(at|st)

πθold
(at|st) is the probability ratio between the new policy πθ and the old policy πθold

,
and Ât is the estimated advantage at time-step t. The hyperparameter ϵ clips the ratio rt(θ), ensuring
the new policy does not deviate drastically from the old, thus enabling more stable training. PPO
has proven effective in complex control problems, including robotics and autonomous navigation,
due to its balance of sample efficiency, simplicity, and reliable policy improvement.

Compared to value-based methods like Deep Q-Networks (DQN) (Mnih et al., 2015) and its variants
such as Double DQN (van Hasselt et al., 2016), PPO is often preferred for complex control tasks,
even with discrete action spaces like those typically used in DeepRacer. While DQN performs well
in environments with smaller discrete action spaces, PPO can offer greater stability during training
in high-dimensional state spaces and potentially large discrete action spaces. Compared to Deep

1



Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016), which handles continuous actions but
can suffer from instability, PPO provides a more robust and empirically stable alternative suitable
for optimizing fine-grained control policies where learning stability is critical.

2.2 Convolutional Networks for Image Processing

The AWS DeepRacer environment provides observations including front-facing stereo gray-scale
camera images (160 × 120 pixels each). These images are the primary input for track navigation,
encoding visual cues for lane following, curve anticipation, and obstacle detection. To process these
high-dimensional inputs, we employ a Convolutional Neural Network (CNN) as a visual feature
extractor, transforming raw pixels into a compact latent representation for decision-making.

Input images are normalized to [0, 1] within the network’s forward pass. Our CNN architecture
uses three convolutional layers (with kernel sizes 8x8, 4x4, 3x3 and strides 4, 2, 1, respectively,
each followed by a ReLU activation) to process the raw 160 × 120 stereo input (2 channels). Batch
Normalization is not used in this specific encoder. The resulting feature maps are flattened into a
high-dimensional vector. When LIDAR sensor data is available (e.g., in obstacle avoidance and head-
to-head modes), the 64-dimensional LIDAR vector (representing radial distances) is processed in
parallel by a separate Multi-Layer Perceptron (MLP) consisting of two linear layers (projecting 64 ->
128 -> 128 dimensions) with ReLU activations, producing a LIDAR embedding. The flattened visual
features and the LIDAR embedding are concatenated. This combined vector is then passed through
a final ’combiner’ MLP (a linear layer followed by ReLU) to produce a fixed-size embedding (e.g.,
512 dimensions). Layer Normalization is applied to this final embedding vector. This multi-modal
fusion allows the agent to integrate both visual-semantic cues and spatial-distance information. The
final normalized combined latent representation is fed into two separate heads: an actor network
outputting a probability distribution over discrete action tuples (steering, throttle), and a critic
network estimating the state-value function V (s). This actor-critic structure facilitates efficient
policy learning and stable value estimation.

3 Problem Definition
We frame the DeepRacer racing task as a reinforcement learning problem where an agent must learn
to control a simulated autonomous vehicle using high-dimensional sensory input. The objective is
to navigate diverse race tracks efficiently and safely under multiple racing conditions.

3.1 Environment Description

The AWS DeepRacer simulator provides a Gym-compatible (Brockman et al., 2016) environment
where an agent interacts with the world via discrete control commands based on camera and LIDAR
observations. The task is formulated as a partially observable Markov decision process (POMDP)
(Sutton & Barto, 2018) due to limited sensing and the absence of full state observability at inference
time. At each timestep, the agent receives stereo grayscale images from front-facing cameras and a
64-dimensional LIDAR vector representing radial distances to nearby obstacles over a 360◦ range.
While internal state variables (e.g., x, y, heading, velocity) are available for reward shaping, they
are excluded from the observation space to mimic real-world sensor constraints. The agent selects
an action from a discrete set of N steering and throttle combinations. Episodes terminate under
conditions like track completion, collision, leaving the track, immobilization, or time expiration.
Table 1 summarizes the key components of the DeepRacer environment.

To assess the agent’s ability to generalize, we evaluate it across three race tracks of increasing
complexity (A-Z Speedway, Smile Speedway, and Empire City, see Figure 1) under three task variants:

• Time-Trial: Fast lap completion without obstacles or competitors.
• Obstacle-Avoidance: Navigation around six static obstacles.
• Head-to-Bot: Racing against three moving opponent vehicles.

2



Component DeepRacer Problem Description
Observation
Space
(O)

Stereo camera images (160 × 120 each) + 64D
LIDAR vector

Partially observable POMDP: Grayscale stereo
images provide visual cues; LIDAR gives radial
distances to obstacles. Raw state variables (posi-
tion, heading, velocity) are inaccessible.

Action
Space
(A)

Discrete:
{(si, vi)}N

i=1 steering/throttle tuples
Used: (0◦, 0.6), (±30◦, 0.6)

Actions represent joint choices of steering angle
(±30◦) and speed (0.2 to 1.0 m/s), enabling lane
following, turning, and evasive maneuvers.

Transition
Dynamics

Deterministic simulation with noisy observations Physics-based simulator provides deterministic
transitions; sensor noise and occlusion induce
partial observability. Track layout and agent dy-
namics are fixed.

Reward
Function
(R(s, a))

R = Rcenter + Rprogress + Ralignment + Robstacle Reward Shaping (used in this study):
(+) Centerline tracking (exponential decay from
center).
(+) Percentage progress increment.
(+) Heading alignment to next waypoint.
(−) Penalty based on exponential distance to
nearest obstacle (via LIDAR).

Episode
Termination

Lap complete, collision, off-track, timeout, immo-
bilization

Episodes end if the agent completes the lap,
crashes, leaves the track, gets stuck, or exceeds
time limit.

Environmental
Parameters

Tracks (Figure 1):
reInvent2019 Wide (L:16.64m, W:1.07m)
reInvent2019 Track (L:23.12m, W:1.07m)
New York Track (L:21.88m, W:0.76m)

Race types: Time-trial (clean), Obstacle-
Avoidance (6 static), Head-to-Bot (3 opponents).
Tracks vary in curvature, width, and complexity.

Table 1: AWS DeepRacer Environment Components

Figure 1: Track layouts used in the study: (a) A-Z Speedway (reInvent2019 Wide), (b) Smile
Speedway (reInvent2019 Track), (c) Empire City (New York Track). Track complexity increases
from left to right.

3.2 Main Challenges

Achieving robust policy generalization in the AWS DeepRacer environment involves several non-
trivial challenges stemming from environmental variability and RL fundamentals:

1. Track Variability: The agent must generalize across three tracks (A-Z Speedway, Smile Speedway,
Empire City) varying significantly in curvature, width, and complexity. Overfitting to one track’s
geometry hinders performance on others, necessitating the learning of abstract driving principles
over spatial memorization.

2. Task Mode Generalization: Evaluation occurs in three modes: clean time-trials, static obstacle-
avoidance, and dynamic multi-agent races. These vary in sensory complexity and decision needs
(e.g., reactive maneuvering for obstacles vs. strategic interaction with unpredictable opponents).
A general policy must adapt across these contexts.

3. Partial Observability: Operating under POMDP constraints, the agent relies solely on noisy,
limited-range stereo vision and LIDAR, lacking true global state (e.g., absolute coordinates, op-
ponent headings). This restricts long-term anticipation and complicates generalization, especially
on narrow or cluttered tracks.

3



Figure Placeholder: NN Architecture Diagram

Figure 2: Multi-modal neural network architecture (Conceptual Diagram).

4. Reward Sparsity and Ambiguity: Without reward shaping, meaningful rewards (lap completion)
are sparse, hindering credit assignment (Sutton & Barto, 2018). Shaped rewards, while denser,
risk promoting suboptimal behaviors (e.g., reward hacking) if not carefully designed.

5. Temporal Credit Assignment: Associating actions with delayed outcomes (e.g., a crash resulting
from an earlier poor line choice) is crucial for non-myopic racing but difficult due to delayed
feedback and the lack of explicit planning mechanisms in standard policy architectures.

6. Dynamic Scene Understanding: Multi-agent scenarios require interpreting a constantly changing
environment. The agent must model opponent vehicle dynamics (speeds, trajectories, collision
risks) from partial, low-dimensional inputs, a significant step beyond interpreting static track
boundaries.

Together, these challenges demand generalized policies robust across spatial, temporal, and sensory
domains. Simple behavioral cloning or track memorization is insufficient; robust solutions require
encoding general driving priors effective under varying conditions and realistic perturbations.

4 Methodology
We trained a DeepRacer agent using Proximal Policy Optimization (PPO) with a curriculum learning
strategy (Narvekar et al., 2020) and a multi-modal neural network processing visual and LIDAR
inputs. To promote generalization and handle increasing complexity, training progressed through
stages:

1. Fixed Start: Initial training on the easiest track (reInvent2019_Wide) with a fixed starting pose
to learn basic control.

2. Randomized Start: Introducing random starting positions on the track to expose the agent to
diverse sections.

3. Randomized Direction & Harder Tracks: Applying random start positions and random lap direc-
tion (forward/reverse) on progressively harder tracks (reInvent2019_Track, New_York_Track).

This progression gradually increased task difficulty. Moderate domain randomization (minor vari-
ations in start velocity/heading) was also used to enhance robustness, inspired by techniques like
(Tobin et al., 2017). The agent trained for a total of 20,000 simulation steps, distributed across the
curriculum stages, advancing based on performance convergence.

4.1 Training Configuration and Hyperparameters

We used the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) with a clipped
objective and Generalized Advantage Estimation (GAE) (Schulman et al., 2016). Key hyperparam-
eters are listed in Table 3. These were chosen based on standard practices and limited preliminary
tuning due to time constraints, and remained fixed throughout the curriculum. Training involved
collecting rollouts of nsteps = 512 steps (experience chunks) and performing 5 update epochs per
rollout using minibatches of size 64. The total training time for 20,000 steps was approximately two
hours on a standard machine using the AWS DeepRacer simulation environment. The final policy
obtained after the full curriculum was used for evaluation.

4.2 Multi-Modal Neural Network Architecture

The agent processes sensory inputs using a multi-modal network (summarized in Table 2).

• Visual Input: Raw stereo grayscale camera images (160 × 120 × 2) are normalized and processed
by a CNN consisting of three convolutional layers (kernels 8x8, 4x4, 3x3; strides 4, 2, 1; ReLU
activations, no BatchNorm). The output is flattened to an 11264-dimensional vector.

4



Module Layers (in order) Output dims

Stereo
CNN
Encoder

Input: 2 × 120 × 160 stereo images (Normalized in fwd pass)
Conv1: 8x8, stride 4, ReLU (32 channels)
Conv2: 4x4, stride 2, ReLU (64 channels)
Conv3: 3x3, stride 1, ReLU (64 channels)
Flatten

11264

LIDAR
MLP
Encoder

Input: 64-dim distance vector
Linear(64 → 128), ReLU
Linear(128 → 128), ReLU

128

Fusion Concatenate (11264 + 128) 11392

Combiner Linear(11392 → 512), ReLU
LayerNorm 512

Actor head FC(512 → Nactions), Softmax Nactions

Critic head FC(512 → 1), Linear 1

Table 2: Multi-modal policy network architecture used with PPO (Updated to match code imple-
mentation).

Hyper-parameter Value Description
Total timesteps 20 000 Environment steps used for training (across curricu-

lum)
PPO clip range ϵ 0.2 Ratio clipping threshold
Discount factor γ 0.99 Long-term reward discount
GAE λ 0.95 Generalized Advantage Estimation parameter
Learning rate 8 × 10−4 Adam optimizer step size
Batch size 64 Minibatch size for SGD per epoch
Rollout length nsteps 512 Steps collected before each parameter update
Epochs / update 5 Number of gradient passes over rollout buffer per

update
Value-loss coef. 0.5 Weight of the critic (value function) loss term
Entropy coef. 0.01 Weight of the policy entropy bonus (encourages ex-

ploration)
Seed 42 Random seed for reproducibility

Table 3: Training hyper-parameters for PPO.

• LIDAR Input: A 64-dimensional LIDAR vector (radial distances) is processed by a two-layer MLP
(Linear 64→128→ReLU, Linear 128→128→ReLU), generating a 128-dim LIDAR embedding.

• Fusion, Combination, and Policy Heads: The flattened visual features (11264-dim) and the LI-
DAR embedding (128-dim) are concatenated (11392-dim total). This combined vector is passed
through a ’combiner’ MLP (Linear layer projecting to 512 dimensions, followed by ReLU) and
then Layer Normalization. This final 512-dimensional normalized embedding is fed into separate
fully-connected heads for the actor (outputting a policy over Nactions discrete steering/throttle tu-
ples via Softmax) and the critic (outputting the value estimate V (s) via a linear layer), following
the standard PPO actor-critic structure.

This architecture allows the agent to integrate visual cues with spatial proximity information from
LIDAR, combining them into a fixed-size representation suitable for policy and value function ap-
proximation.

4.3 Detailed Reward Shaping

The AWS DeepRacer environment requires a shaped reward signal to encourage efficient, safe driv-
ing and to mitigate the sparsity of natural rewards (e.g., only receiving a positive signal at lap
completion). Our implementation employs a modular reward function composed of several inter-
pretable components, aligned with specific driving objectives such as maintaining central alignment,
progressing steadily, and avoiding collisions. The total reward is computed as a weighted sum of
individual reward terms:

Rt = λcenterRcenter + λspeedRprogress + Icomplete − λobstacleRobstacle − Icrash

where λi denote weighting coefficients, and Icrash is an indicator function for terminal collision events.

5



1. Centerline Following: To promote lane-keeping, we apply an exponential decay based on the
vehicle’s normalized lateral offset dt from the centerline:

Rcenter = e
−0.8·

(
dt

w/2

)2

where w is the track width and dt is the distance from center. This term ensures smoother,
center-aligned trajectories.

2. Progress Incentive: The agent receives a linear reward proportional to the track progress:
Rprogress = progress

100

where progress is expressed as a percentage. This encourages continuous forward motion.
3. Lap Completion Bonus: Upon nearing the end of the lap (i.e., progress ≥ 98%), a completion

bonus is awarded, scaled by a factor inversely proportional to the number of steps taken:

Rcompletion =

{
10 · max(0.5, min(1.5,

Starget
St

)) if progress ≥ 98
0 otherwise

,

where St is the number of steps taken and Starget = 250 is the target for an optimal lap.
4. Obstacle Penalty: When static obstacles are present, the agent is penalized based on the minimum

Euclidean distance do to nearby obstacles:

Robstacle =

{
min

(
1.0, 1.5 · exp

(
− dsafe

do+ε

))
do < dsafe

0 otherwise
,

with dsafe = 1.0 meters and ε = 10−5 to avoid division by zero. This exponential penalty
discourages risky proximity to obstacles.

5. Completion Reward. A large positive reward is applied if the agent completes a lap:

Icomplete =
{

+20.0 if complete lap
0 otherwise

.

6. Crash Penalty. A large negative penalty is applied if the agent crashes:

Icrash =
{

−10.0 if crash
0 otherwise

.

The reward weights λi were set heuristically based on preliminary tests to prioritize steady progress
and safety: λcenter = 0.33, λprogress = 0.33, λobstacle = 0.33.

5 Results
After training, we evaluated the learned agent across all nine scenarios (3 tracks × 3 modes) mea-
suring performance and generalization via lap completion rate, average lap time (successful runs),
and average progress (percent track completed, including failures). Agent trajectories (Figure 3) il-
lustrate driving behavior, while quantitative performance metrics are summarized in Figure 4. Clear
trends emerge:

• Time-Trial Performance: The agent excelled in time-trials (no obstacles/opponents), achieving
a 100% lap completion and progress on all tracks (Figure 4a). Average lap times demonstrated
adaptation to track complexity: 92s (A-Z Speedway, wide), 302s (reInvent2019 Track, medium),
and 431s (Empire City, narrow). These efficient times and high completion rates indicate a
robust lane-following and cornering policy learned via curriculum training, successfully general-
izing across track geometries seen during training (including the narrow New York track) in this
simplified setting. Trajectories in Figure 3 (top row) show consistent lines.

• Obstacle Avoidance: Introducing static obstacles significantly degraded performance, despite
LIDAR input and reward penalties. The completion rates are as follows: 15% (A-Z),
22% (reInvent2019), and 22% (Empire City). Qualitatively, agents approached obstacle clus-
ters cautiously, often stalling or executing abrupt detours that led to side-wall contacts after

6



(a) Track 1: Time (b) Track 2: Time (c) Track 3: Time

(d) Track 1: Obstacle (e) Track 2: Obstacle (f) Track 3: Obstacle

(g) Track 1: Moving (h) Track 2: Moving (i) Track 3: Moving

Figure 3: Training time traces for (top) Time Trial, (middle) Obstacle, and (bottom) Moving Bot
configurations across the three circuits

the first successful dodge (see trajectories in Figure 3, middle row). Although a handful of
near-completions/completions emerged late in training on the two reInvent circuits, the policy
never converged to behaviour that generalised when obstacles were respawned at novel locations.
The sharp drop from near-perfect time-trial laps to sub-30% progress here underscores a substan-
tial generalisation gap when the agent is confronted with previously unseen static hazards.

• Head-to-Head (Dynamic Opponents): Racing against three moving bots proved the similarily
challenging, revealing a severe lack of generalization to dynamic, interactive scenarios. Com-
pletion rates, while slightly improved, were again low: ∼50% (A-Z), ∼60% (reInvent2019), and
nearly 30% (Empire City) as seen in Figure 4c). Collisions were frequent, especially in narrow sec-
tions. Trajectories (Figure 3, bottom row) often show aborted laps or hesitant following. While,
some success was demonstrated in the training, average progress was low, especially on the hard-
est track (40-50%. This outcome underscores the failure to generalize to dynamic multi-agent
environments.

The results highlight a stark contrast: while the PPO agent with curriculum training mastered
solo time-trials across varied tracks, its performance drastically dropped when faced with static

7



(a) Time Trial: Progress (%) (b) Obstacle: Progress (%) (c) Moving: Progress (%)

(d) Time Trial: Lap Time (s) (e) Obstacle: Lap Time (s) (f) Moving: Lap Time (s)

Figure 4: Performance summary across scenarios and tracks. Box plots show distribution of average
progress per episode (top row) and average lap time for completed laps (bottom row). Tracks are
ordered (left to right within each plot): A-Z Speedway, reInvent2019 Track, Empire City Track.

obstacles or dynamic opponents—conditions absent during training. The high completion rates and
fast times in time-trials confirm successful learning of basic driving skills and generalization to track
geometry. However, the significantly lower completion rates, slower times, and reduced progress in
obstacle/multi-agent modes reveal a critical limitation in generalizing to increased task complexity
involving hazard avoidance and interaction. The narrowest track (New York) consistently posed the
greatest difficulty, particularly with opponents. This demonstrates that while the training regime
produced a competent solo racer, it failed to equip the agent with the robustness needed for more
complex, realistic racing scenarios.

6 Discussion
The results demonstrate successful learning for the time-trial task across multiple tracks but reveal
significant limitations when generalizing to scenarios with obstacles or dynamic opponents. This
performance degradation highlights critical challenges related to the training methodology and the
inherent complexities of reinforcement learning generalization.

1. Training-Evaluation Mismatch and Lack of Task Generalization: The primary reason for poor
performance in obstacle avoidance and head-to-head modes is a fundamental mismatch between
training and evaluation conditions. Our curriculum, while varying tracks and start conditions,
exclusively featured single-agent, obstacle-free driving. Consequently, the learned policy likely
overfit to this narrow task distribution (Zhang et al., 2018). Introducing obstacles or other agents
at evaluation time constituted a significant domain shift for which the agent was unprepared
(Cobbe et al., 2019).
This gap manifested clearly: the agent often failed to identify or react appropriately to obstacles
despite LIDAR input and penalty terms, suggesting learned visual features did not prioritize
hazard identification. Similarly, in multi-agent scenarios, the agent operated purely reactively,
lacking the ability to anticipate opponent actions or plan strategically (e.g., for overtaking). This

8



stems from framing the problem as a single-agent POMDP, which is insufficient for the non-
stationary dynamics introduced by other agents (Albrecht et al., 2024; Lowe et al., 2017). The
absence of opponent modeling capabilities (Carroll et al., 2019; Albrecht et al., 2024) or training
exposure to interactive scenarios meant the agent lacked policies for negotiation or complex
avoidance maneuvers. Effectively, the training lacked the task diversity necessary for robust
generalization; achieving robustness requires training curricula that encompass the variations
expected during deployment (Tobin et al., 2017; Cobbe et al., 2019).

2. Potential Conflicts and Credit Assignment Issues in Reward Design: While providing dense feed-
back, the multi-term shaped reward function may have inadvertently hindered adaptation. Con-
flicting incentives could arise—for example, between maintaining centerline proximity (highly
rewarded) and deviating to avoid an obstacle (incurring a temporary penalty). Heuristic tuning
of reward weights might not have optimally balanced competing objectives, especially given the
temporal credit assignment problem (Sutton & Barto, 2018), where linking delayed consequences
(collisions) to earlier actions is difficult. Overly complex shaping can potentially lead to subop-
timal local optima (Sutton & Barto, 2018), where maximizing parts of the reward hinders the
overall goal of safe completion. Simpler or adaptive reward structures might be necessary for
robustly learning complex behaviors like obstacle avoidance or strategic overtaking.

3. Limitations from Training Budget and Hyperparameter Tuning: Practical constraints likely im-
pacted the agent’s capabilities. The relatively short training duration (20k timesteps, compared
to millions often used in complex deep RL tasks (Mnih et al., 2015; Schulman et al., 2017)) might
mean the policy was under-trained, particularly for adapting to the most challenging curricu-
lum stages. Furthermore, using baseline PPO hyperparameters and a fixed network architecture
without extensive tuning (cf. (Akiba et al., 2019)) might have limited performance. Suboptimal
learning rates, entropy weights, or network capacity could affect learning speed, stability, and the
ability to capture behaviors required for challenging tasks. While our approach yielded strong
time-trial results, further optimization of training time and hyperparameters could potentially
improve performance and generalization.

While combining PPO, curriculum learning, and multi-modal inputs produced a competent solo racer
generalizable across track geometries, the agent’s capabilities proved brittle. Failures in complex
scenarios primarily stem from insufficient task diversity during training, potentially compounded by
reward conflicts and resource limitations. This underscores the critical need for training regimes
that mirror the target deployment’s complexity and variability, especially when transitioning from
single-agent to interactive or hazard-rich settings (Cobbe et al., 2019). The positive generalization
in time-trials suggests, however, that extending the curriculum’s task diversity remains a promising
direction for future work.

7 Future Work
Several promising directions exist to address the limitations identified and enhance the agent’s
capabilities:

1. Enhance Training Curriculum and Multi-Task Learning: The most critical step is to broaden
the training distribution. Incorporating obstacle avoidance and multi-agent interaction scenarios
(potentially via self-play, training against scripted bots, or using techniques from multi-agent
RL (Albrecht et al., 2024)) directly into the curriculum is essential for developing robust poli-
cies (Cobbe et al., 2019; Narvekar et al., 2020). This includes varying obstacle placements and
opponent behaviors.

2. Simplify or Adapt Reward Function: Conduct ablation studies to assess the impact of individual
reward terms. Exploring simpler reward structures (e.g., focusing primarily on progress and
safety penalties) or adaptive reward weighting mechanisms could potentially mitigate conflicting
incentives and improve learning in complex scenarios.

3. Incorporate Opponent Modeling / MARL Techniques: Explicitly address the multi-agent challenge
by adopting techniques like centralized training with decentralized execution (CTDE) (Lowe et al.,

9



2017; Rashid et al., 2018; Sunehag et al., 2017) or training separate opponent prediction models
(potentially using recurrent networks like LSTMs (Sutton & Barto, 2018)) to inform the agent’s
policy, enabling more strategic interactions.

4. Optimize Training Process: Extend training durations and perform systematic hyperparameter
tuning (learning rates, entropy coefficients, network architecture), potentially using automated
methods (Akiba et al., 2019), to ensure the agent reaches its full potential within the PPO
framework.

5. Investigate Sim-to-Real Transfer: For physical deployment, focus on sim-to-real transfer, likely
requiring enhanced domain randomization (visuals, physics) during simulation (Tobin et al., 2017)
and potentially simpler reward functions robust to real-world noise and sensor limitations.

By pursuing these avenues, particularly enhancing curriculum task diversity and adopting multi-
agent learning strategies, future work can build upon our findings to develop DeepRacer agents
proficient across a wider spectrum of competitive racing challenges.

8 Conclusion
This study demonstrated the application of deep reinforcement learning, specifically Proximal Policy
Optimization (PPO) combined with curriculum learning, to train an autonomous agent for the
AWS DeepRacer platform using multi-modal (stereo vision, LIDAR) sensory inputs. Our approach
successfully produced an agent capable of achieving fast and reliable lap times in solo time-trial
scenarios across multiple tracks, confirming the effectiveness of PPO and track-geometry-focused
curriculum learning for acquiring basic autonomous racing skills. The shaped reward function proved
viable for guiding efficient navigation in this context.

However, evaluation across diverse task modes revealed significant generalization limitations. The
agent, trained exclusively in a single-agent, obstacle-free setting, struggled markedly when faced with
static obstacles or dynamic opponents. This highlights a critical gap between the training regime and
the requirements of more complex, interactive scenarios. Our key finding underscores that effective
curriculum learning must encompass task diversity (including hazards and interactions), not just
environmental variation (like tracks and start points). Omitting crucial complexities from training
resulted in a policy ill-equipped for them. This work provides an empirical analysis quantifying this
generalization drop, emphasizing the need to align training complexity with deployment expectations
in RL for autonomous systems. While the shaped reward aided the primary task, its complexity
might warrant investigation regarding potential suboptimal behavior in avoidance tasks. Ultimately,
our results emphasize that robust autonomous agents require training experience reflecting the full
spectrum of anticipated operational challenges.

10



References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:

A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Reinforcement Learning:
Foundations and Modern Approaches. MIT Press, 2024. URL https://www.marl-book.com.

Janakiram Balaji and Oren Etzioni. Bridging simulation and reality: Lessons from the DeepRacer
platform. In Proceedings of the 2020 IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR), pp. 45–52, 2020.

Janakiram Balaji, Shane Ross, and Sachin Tangirala. AWS deepracer: Accelerating rein-
forcement learning through autonomous-scale racing. In NeurIPS 2019 Workshop on Ma-
chine Learning for Autonomous Driving, 2019. URL https://drive.google.com/file/d/
1Yc76l5h7y1dFazw6VvVIBd90ZNt27XJL. Extended Abstract.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-ai coordination, 2019. URL
https://arxiv.org/abs/1910.05789.

Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In Proceedings of the 36th International Conference on
Machine Learning (ICML), pp. 1282–1289, 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, and et al. Continuous control with deep
reinforcement learning. arXiv preprint, arXiv:1509.02971, 2016. URL https://arxiv.org/abs/
1509.02971.

Ryan Lowe, Yi Wu, Aviv Tamar, and et al. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems 30 (NeurIPS), pp. 6379–
6390, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, and et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey, 2020. URL
https://arxiv.org/abs/2003.04960.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foer-
ster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning, 2018. URL https://arxiv.org/abs/1803.11485.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
4th International Conference on Learning Representations (ICLR), 2016. URL https://arxiv.
org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, arXiv:1707.06347, 2017. URL https://arxiv.org/abs/
1707.06347.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent learning, 2017. URL https://arxiv.org/
abs/1706.05296.

11

https://www.marl-book.com
https://drive.google.com/file/d/1Yc76l5h7y1dFazw6VvVIBd90ZNt27XJL
https://drive.google.com/file/d/1Yc76l5h7y1dFazw6VvVIBd90ZNt27XJL
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1910.05789
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2003.04960
https://arxiv.org/abs/1803.11485
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296


Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, MA, 2nd edition, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30, 2017.
doi: 10.1109/IROS.2017.8202133.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pp.
2094–2100, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, and Benjamin Recht. A study on overfitting in deep
reinforcement learning. arXiv preprint, arXiv:1804.06893, 2018. URL https://arxiv.org/abs/
1804.06893.

A Available Repository
All code and supplementary materials used in this research are available in a GitHub repos-
itory. The repository can be accessed at: https://github.gatech.edu/gt-omscs-rldm/
7642RLDMSpring2025kodendaal3 where the latest commit hash is:

12

https://arxiv.org/abs/1804.06893
https://arxiv.org/abs/1804.06893
https://github.gatech.edu/gt-omscs-rldm/7642RLDMSpring2025kodendaal3
https://github.gatech.edu/gt-omscs-rldm/7642RLDMSpring2025kodendaal3

