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1 Introduction

Multi-Agent Reinforcement Learning (MARL) has shown promise for tasks requiring precise co-
ordination, such as the Owercooked environment, where agents jointly prepare and deliver soups
by completing interdependent objectives. This study compares baseline Independent Double Deep
Q-Network (IQL-DDQN) agents against Value Decomposition Network (VDN-DDQN) agents and
clearly highlights how joint-value decomposition promotes effective collaboration while considering
curriculum methods. Furthermore, an ablation analysis explores critical algorithmic components,
including symmetric replay buffers, exploration robustness, and DDQN architectures which help in
identifying factors that significantly influence performance in collaborative MARL scenarios.

2 Technical Background

This section briefly reviews fundamental concepts in MARL, highlighting key principles that form
the theoretical basis for the upcoming empirical evaluations.

2.1 Multi-Agent Reinforcement Learning

MARL extends Single-Agent Reinforcement Learning (RL) to scenarios where multiple agents con-
currently interact with and influence a shared environment (Albrecht et al., 2024). MARL introduces
unique challenges, including:

o Non-stationarity: Each agent’s environment continuously evolves as other agent policies change
during learning, which has the potential to greatly complicate convergence properties.

e Moving Target Problem: Bootstrapped Q-value updates depend on changing subsequent state-
value estimates, creating training instability. Target networks can help to avoid this by providing
more stable updates.

To address these complexities, Centralized Training - Decentralized Execution (CTDE) is commonly
considered. Under CTDE, agents utilize global information during centralized training to optimize
joint objectives, allowing for sophisticated coordination strategies (Albrecht et al., 2024). However,
at execution time, agents rely only on local observations. This promotes scalability and practical
deployment for real-world scenarios in which such information cannot be known. Despite the effec-
tiveness of CTDE, simpler decentralized approaches such as Independent Q-Learning (IQL) often
serve as a valuable baseline due to their conceptual simplicity and ease of implementation.

2.2 Independent Q-Learning

IQL is a decentralized approach that decomposes a multi-agent scenario into multiple simultaneous
single-agent problems (Albrecht et al., 2024) working in a shared local environment. Although
it doesn’t explicitly handle non-stationarity and thus lacks convergence guarantees, it remains a
practical baseline due to ease of implementation (Rashid et al., 2018).

2.3 Value Decomposition Network

Value decomposition networks (VDN) aim to address coordination by learning a joint action-value
function decomposed into individual agent value functions. Formally:

Quot(Ty0) = N Qil7i,us)



Figure 1: Overcooked layouts (left-to-right): Cramped Room, Coordination Ring, Counter Circuit

where 7 and u represent joint observation-action histories and joint actions, respectively, and
Qi(7i,u;) is the individual agent utility based on local observation-action history (Sunehag et al.,
2017; Rashid et al., 2018). By decomposing the joint value into additive individual utilities, VDN can
capture the contributions of individual agents toward collective outcomes, allowing for decentralized
execution and improved coordination. While effective, VDN’s linear additive decomposition limits
its ability to capture complex, non-linear interactions among agents. Environments which require
complex inter-agent dependencies, alternative methods such as QMIX may be more suitable (Rashid
et al., 2018).

2.4 Deep Q-Network and Double DQN

Deep Q-Network (DQN) introduced function approximation via neural networks to represent the
action-value function, enabling Q-learning to scale effectively to high-dimensional state spaces (Mnih
et al., 2013). However, DQN suffers from an overestimation bias due to the maximization step in
target value calculations (van Hasselt et al., 2015). DDQN avoids this by separating action selection
from evaluation. DDQN’s target update rule is given by:

y=r—+vQ(s, argmax, Q(s',a’;0);07)

where 0 and 6~ represent parameters of the online and target networks respectively (van Hasselt
et al., 2015). Reducing this overestimation bias is particularly beneficial in multi-agent reinforcement
learning, as it provides more stable value estimations critical for effective cooperation.

Additionally, to take advantage of the symmetrical structure inherent to cooperative tasks within
the Overcooked two-agent environment, the replay buffer is augmented with symmetric experiences.
Specifically, each original experience tuple (s,a,r,s’) is stored alongside its symmetric counterpart
(Sms @m, 1y 8h,). This effectively doubles the usable data and can significantly improve sample effi-
ciency and promote better generalization (Lin et al., 2020; Kim et al., 2024).

2.5 Exploration Strategies

An epsilon-greedy exploration with linear decay was used. Initially high exploration (€4, = 1.0)
linearly decays to a lower bound (€,,;, = 0.1) by 80% of training episodes. After this point, the
parameters remain constant to ensure stable convergence. Formally, the exploration probability at
episode 7 is computed as:

— )
€; = nax <€min7 €maz — (emam - E"”")O.&Emaz)

where F,,,, is the total number of episodes used for training. During policy evaluation, agent policies
are tested with a small fixed exploration probability (e = 0.05) which introduces slight randomness.
This allows verification of learned MARL policy robustness and generalization under minor changes
and perturbations, reflecting realistic operational uncertainties.

2.6 Curriculum Learning

Curriculum learning is a structured training approach in machine learning, where models or agents
are systematically exposed to tasks of increasing complexity. Initially, agents are trained on simpli-
fied scenarios to acquire foundational skills and gradually progress toward tackling more intricate
tasks. Using the internal weights of the network trained on simpler tasks as a starting point, rather



Component Overcooked Problem Description

State 96-dimensional vector Fully observable MDP: Player-centric features in-

Space cluding relative positions, object states, and other

(S) agent states.

Action Discrete: Movement and contextual interact action deter-

Space {up, down, left, right, stay, interact} mined by the environment tile facing the agent.

(A)

Transition Deterministic discrete simulation Deterministic state transitions occur based on si-

Dynamics multaneous agent actions within kitchen environ-
ment rules (e.g., cooking, serving, pickup).

Reward R = Rpot + Rdish + Rpickup + Rsoup (+) 20 points per successful soup delivery

Function Reward Shaping (used in this study):

(R(s,a)) (+) 3 point for agent placing onion in pot.

(+) 1 point for agent picking up dishes.

(4) 5 points for agent picking up soup.

(=) Inefficient actions indirectly penalized by
consuming valuable time without reward.

Episode Fixed 400-timestep horizon Episodes always run exactly 400 timesteps with-

Termination out early termination.

Environmental Layouts: Three kitchen layouts requiring varying levels of

Parameters Cramped Room, Coordination Ring, multi-agent collaboration, coordination complex-
Counter Circusit ity, and policy generalization.

Table 1: Overcooked Environment Components

than initializing from a random distribution allows the models to efficiently build upon previously
mastered concepts, thereby accelerating the learning process (Narvekar et al., 2020).

3 Problem Definitions

The Overcooked environment is a cooperative multi-agent scenario that models the complexities of
coordinated decision-making. Agents must collaboratively complete tasks that require interdepen-
dent actions under time constraints, making it an ideal testbed for exploring MARL algorithms that
facilitate cooperation and efficient task allocation. Specifically, agents are tasked with preparing
and delivering soups, demanding close coordination and effective strategy alignment to maximize
performance.

3.1 Environment Description

In the discrete Overcooked environment, two chef agents cooperate in a simulated kitchen to prepare
onion soups. Preparing each soup involves placing exactly three onions into a pot, cooking for 20
timesteps, transferring the cooked soup onto a dish, and serving it to a designated area (Carroll
et al., 2019a;b). Although agents do not receive explicit penalties, inefficiencies such as dropping
soups or incorrect servings implicitly penalize them by wasting valuable time.

Agents perform discrete actions, including directional movements (up, down, left, right, stay) and
a contextual interact action. Each episode is constrained to 400 timesteps, during which the pri-
mary goal is to maximize the number of successful soup deliveries. Performance benchmarks require
achieving an average of at least seven soup deliveries per episode, assessed across three progres-
sively challenging kitchen layouts (see Figure 1). The key components of the environment, such as
termination conditions and reward structures, are summarized in Table 1.

3.2 Overcoming Critical Challenges

The complexity of the Overcooked environment mainly comes from its multi-agent nature, requiring
agents to coordinate actions effectively while navigating shared kitchen resources like pots, onions,
and dishes. Agents must develop complementary strategies, minimize collisions, and efficiently
manage resources under tight time constraints. Another complication is the delayed and sparse
reward structure. Agents only receive rewards when successfully delivering completed soups. This
sparsity makes it difficult to assign credit to individual actions, therefore requiring advanced credit-
assignment methods and long-term cooperative strategies (Albrecht et al., 2024). Additionally,
agents encounter a high-dimensional observation space represented by detailed, agent-specific, 96-



dimensional vectors, complicating the extraction of important information such as relative positions
and cooking statuses.

To tackle these challenges, specialized MARL methods have been applied. CTDE frameworks fa-
cilitate coordination during training while allowing agents to operate independently during exe-
cution (Albrecht et al., 2024). VDN explicitly allocates credit to each agent’s actions, effectively
addressing the sparse reward problem (Sunehag et al., 2017). Furthermore, advanced reward shap-
ing provides agents with meaningful intermediate feedback signals, helping reduce issues related to
delayed and sparse rewards. Curriculum learning, training progressively from simpler to complex
layouts, ensures policy generalization. Collectively, these approaches offer a comprehensive solution
to the complex coordination and learning challenges inherent in the Overcooked environment, as
further detailed in Section 2.4.

4 Methodology

This section outlines the methodology used for training and evaluating various MARL algorithms
within the discrete action-space of the Overcooked environment. It provides details on the struc-
tured training procedures, hyperparameter optimization strategies, neural network architectures,
and ablation studies used to assess the impact of specific algorithmic components.

4.1 Training and Evaluation Process

Training and evaluation followed a structured, reproducible pipeline, with episode counts increasing
by layout complexity (1000, 2500, and 5000, respectively). The process included:

o Hyperparameter optimization on the Cramped Room layout (10 trials, 200 episodes each) using
Optuna (Akiba et al., 2019), guided by literature-recommended values.

¢ Training and evaluating the baseline IQL-DDQN and the cooperative-focused VDN-DDQN model
across all layouts using optimized parameters. Performance was compared directly.

¢ Monitoring cumulative rewards and soups delivered per episode. Evaluations occurred every 10
episodes using greedy policies with slight noise injection, each spanning 100 simulations.

o Implementing curriculum learning by initializing training for the complex Counter Circuit layout
using pretrained weights from simpler layouts.

¢ Conducting ablations on Cramped Room to evaluate reward shaping, DDQN vs. DQN, and
symmetric vs. standard replay buffers.

4.2 Hyperparameter and Neural Network Architectures

Given the sensitivity of MARL algorithms to hyperparameter selection, Bayesian optimization (using
Optuna) was used to systematically identify effective parameter values. Table 2 summarizes the
search ranges for both hyperparameters and neural network architectures. The optimization targeted
parameters known to significantly affect agent performance, including discount factors, learning
rates, replay buffer sizes, epsilon decay ratios, and batch sizes (Sunehag et al., 2017). However,
hyperparameter optimization is not the primary focus of this study. It serves as an initial step to
establish reasonable baseline settings for the subsequent experiments.

4.3 Ablation Considerations

To systematically analyze the contributions of various algorithmic components, three specific abla-
tion cases were examined exclusively within the Cramped Room layout. First, the relative perfor-
mance of the standard DQN and Double DQN architectures was evaluated to determine whether
reducing Q-value overestimation bias provides meaningful benefits. Second, training with explicit
reward shaping was compared against training without reward shaping to quantify potential im-
provements in performance. Finally, the impact of augmenting the replay buffer with symmetric
experiences was assessed against using a regular shared replay buffer, highlighting any improvements
in sample efficiency and generalization.



Hyperparameter Search Range Optimized

Learning Rate («) [107°, 1072] (log scale) 107°
Discount Factor (v) [0.90, 0.99] 0.98
Soft Update Rate ()  [107%, 1072] (log scale) 273
Epsilon Decay Ratio [0.5, 1.0] 0.70
Batch Size 256, 512, 768, 1024 1024
Hidden Layer 1 Size 64, 128, 192, 256 192
Hidden Layer 2 Size 64, 128, 192, 256 128

Table 2: Hyperparameter Optimization Ranges for DDQN

— Tial0 | — Tial0
— Tial1 12 — Tial1
10{ — Trial 2
— Tial3
— Trial 4
— Tial 5
— Tiial 6

Tiial 7

Tiial 8
6 Trial 9

— Tiial 2
— Tial 3
10{ — Trial 4
— Tial 5
—— Tial 6
8 Trial 7
Trial 8
Trial 9

Soups
Average Soups (100 iterations)
o

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Step Step

(a) Training (b) Evaluation

Figure 2: Hyperparameter optimization (left) training curves with smoothed curves (o = 0.95)
(right) evaluation curves (1o) across 100 iterations

For computational efficiency, each of these studies used evaluations consisting of 100 episodes. Al-
though limited, this number of episodes provides enough insight into the relative impact of each
algorithmic component, allowing for quick comparisons without large computational costs. Ad-
ditionally, the patterns observed in these focused experiments can inform and guide algorithmic
refinements applicable to more complex scenarios.

5 Experiment Results
5.1 Hyperparameter Optimization

Hyperparameter optimization serves as an initial screening phase to quickly identify effective pa-
rameters that support training stability and enhance overall performance.

Figure 2 summarizes the optimization results from ten trials conducted in the Cramped Room layout.
Among these, Trial 3 demonstrated the most consistent improvements in early convergence and final
performance, achieving a higher average number of soup deliveries than the other configurations.
Other trials demonstrated larger variability or slower convergence, highlighting the importance of
parameter selection in shaping policy learning behaviour. Table 2 shows the optimal hyperparam-
eters found through this optimization process, focusing on key factors such as learning rate («),
discount factor (), soft update rate (7), epsilon decay ratio, batch size, and hidden layer sizes.
These hyperparameters are consistently used as the fix configuration for corresponding comparative
evaluations and ablation studies.

5.2 Results Comparison

A systematic comparison between the baseline (IQL-DDQN) and VDN-DDQN approaches was per-
formed across the three Overcooked environment layouts: Cramped Room, Coordination Ring, and
Counter Clircuit. Figure 3 presents a comprehensive view of performance metrics, including soups
delivered, individual agent rewards, and detailed actions such as dish pickups and onion placements.
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Figure 3: Comparative training and evaluation results for baseline (IQL-DDQN) and VDN-DDQN
approaches across three layouts. Top row: soups delivered per episode (left: training, right: evalua-
tion averaged every 10 episodes). Middle row: agent-specific and combined shaped rewards. Bottom
row: detailed action metrics—dish pickups (left) and onion placements (right)—highlighting differ-
ences in agent behaviour and coordination across layouts.

A complete summary of the final training and evaluation results for the number of Soups-made can
be found in Table 3. The VDN-DDQN approach showed a clear advantage over the baseline IQL in
more straightforward layouts (Cramped Room and Coordination Ring), surpassing the benchmark
of 7 soups delivered. This improvement indicates that joint-value decomposition successfully en-
courages cooperative strategies, allowing agents to coordinate better actions like onion placement
and dish management (Sunehag et al., 2017; Rashid et al., 2018). On the other hand, in the most
complex layout (Counter Circuit), VDN-DDQN struggled to complete the 7-soup delivery objective
despite showing steady growth in cumulative rewards. This difference between increasing shaped
rewards and the lack of soup deliveries suggests two possible explanations:

e The agents may still be in the early stages of effectively learning the task sequences required
for successful soup completion. Given that the shaped rewards show a consistent upward trend,
additional training episodes could allow agents to eventually overcome coordination challenges
and complete tasks by increasing the opportunity for agents to explore.



Cramped Coordination Counter

Scenario Eps Train Test Eps Train Test Eps Train Test
Independent 1000 4 3 2500 0 0 5000 0 0
VDN 1000 11 12 2500 14 14 5000 0 0
Curriculum (VDN) x x x x x x 1100 8 7

Table 3: Train and Test Soups-made results summary for each layout across methods
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Figure 4: Episode reward trajectories (left) and corresponding loss curves (right) for different al-
gorithm configurations in the Cramped Room layout. Curves are smoothed using an exponential
moving average (a = 0.90).

o Alternatively, agents may be reward gaming by repeatedly exploiting intermediate rewards in-
stead of task completion. For instance, agents repeatedly place onions or pick up dishes without
progressing toward serving completed soups. This outcome indicates a potential pitfall of poor
reward shaping, where intermediate rewards can dominate the sparse task-completion rewards.

Ultimately, the consistent increase in shaped rewards without actual soup completion suggests that
the current reward structure may incentivize short-term gains over full-task completion (Albrecht
et al., 2024). Adjusting the relative magnitude of rewards or introducing additional shaped rewards
(such as spatial distance to objectives) might help guide agent behaviour to complete the whole
task sequence. While VDN-DDQN clearly outperforms the baseline in simpler layouts, its reduced
effectiveness in more complex scenarios shows the need for further refinements. These could include
adjusted reward shaping, extended training durations, or more sophisticated learning frameworks
(see Section 5.5).

Fortunately, introducing curriculum learning significantly improved agent performance in the most
complex layout. Initially, training the VDN-DDQN model from scratch failed to deliver even a single
soup after 5000 episodes. However, by initializing agents with policies pretrained on the simpler Co-
ordination Ring layout, agents reached the benchmark of seven delivered soups within approximately
1100 episodes. This substantial reduction highlights curriculum learning’s effectiveness in overcom-
ing exploration barriers and enabling agents to transfer previously learned cooperative strategies
to more challenging scenarios. While effective, the optimal curriculum path is uncertain. There-
fore, to better understand which algorithmic components contributed most significantly to these
performance improvements, an ablation study was conducted.

5.3 Ablation Analysis

An ablation study was performed using the Cramped Room layout to better understand the contribu-
tions of different algorithm components. Figure 4 presents the episode rewards and corresponding
loss curves across the different configurations. Several important observations can be made from
this analysis:



o Symmetric Buffer Impact: Including symmetric experiences significantly improved episode re-
wards. This improvement likely results from effectively doubling the experience coverage and
ensuring symmetric state-action pairs are well represented. This method is particularly useful
in structured environments like Overcooked, where symmetric situations are apparent, leading to
better generalization and sample efficiency.

e Reward Shaping Influence: Reward shaping significantly impacted performance compared to
setups without it. The original reward structure is highly sparse, providing rewards only on
successful soup delivery, which makes training challenging. Without shaping, early episodes often
provide no learning signals. This causes loss values to quickly drop toward zero and learning
to stall. Reward shaping helps by offering informative intermediate feedback, keeping the loss
gradient active and helping agents learn the task sequence needed to complete soups.

« DQN vs. DDQN Effectiveness: No significant performance difference appeared between DQN and
DDQN. This could be because the Cramped Room layout is relatively simple and deterministic,
which reduces the impact of DDQN’s main advantage, overcoming Q-value overestimation (van
Hasselt et al., 2015). In this low-complexity scenario, it is likely that the standard DQN already
produces relatively stable estimates. Unfortunately, this makes the added benefits of DDQN less
obvious.

Overall, these ablation results demonstrate just how important careful reward design and effective
experience replay strategies are. They also suggest that certain algorithmic improvements, like
DDQN, might show clearer benefits in more complex or dynamic environments. Insights like these
help target specific areas for future refinement, aiming to further improve performance in multi-agent
cooperative tasks.

5.4 General Challenges

This study highlighted significant progress and several persistent challenges within MARL. The base-
line IQL-DDQN method notably struggled due to its inability to explicitly model agent interactions,
complicating accurate credit assignment—an established challenge in cooperative MARL (Sunehag
et al., 2017). While VDN-DDQN excelled in simpler layouts, its performance dropped sharply in
more complex scenarios like the Counter Circuit, emphasizing difficulties in handling complexity, co-
ordination scalability, and sparse rewards (Rashid et al., 2018). Careful reward shaping is essential,
as overly aggressive shaping can lead agents to exploit intermediate rewards rather than achieving
primary goals. Although symmetric replay buffers improved sample efficiency, challenges persisted
due to limited exploration and diversity of experiences, suggesting a need for more robust explo-
ration or enhanced replay strategies. Curriculum learning showed clear benefits, yet determining
the optimal training sequence and duration remains challenging. Addressing these issues is vital to
enhance MARL’s applicability in real-world scenarios.

5.5 Future Work

Several directions could improve agent performance within complex multi-agent tasks like Over-
cooked. Exploring advanced non-linear MARL frameworks (QMIX or MAPPO), could better cap-
ture complex interactions and enhance agent coordination. Additionally, incorporating algorithmic
enhancements such as prioritized experience replay, multi-step learning, and distributional reinforce-
ment learning (RL) may help improve sample efficiency, convergence speed, and overall performance
stability. Furthermore, adopting potential-based reward shaping techniques, specifically incorporat-
ing spatial information or task-related progress, might provide clearer guidance, alleviating poten-
tial issues related to sparse and delayed rewards. Finally, extending training durations would allow
agents more extensive exploration opportunities, helping them overcome initial coordination barriers
to fully master the required sequences of tasks. These recommendations offer pathways toward more
robust, generalized, and effective MARL systems for complex collaborative environments.



6 Conclusion

Experiments confirmed the importance of well-tuned hyperparameters, collaborative value decom-
position, and carefully designed reward structures within the Overcooked environment. Although
baseline IQL-DDQN showed limited cooperation, VDN-DDQN provided strong performance on sim-
pler tasks, underscoring the benefits of reward shaping and symmetric replay buffers. However,
persistent difficulties in complex scenarios highlight the need for advanced MARL approaches such
as curriculum learning, refined reward-shaping strategies, and improved exploration methods. These
findings lay the groundwork for future enhancements that aim to achieve robust coordination and
effective task completion in complex multi-agent environments.
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