
Lunar Lander using Continuous Control

Kirsten Odendaal
College of Computing
Georgia Institute of Technology

1 Introduction
Reinforcement Learning (RL) has shown incredible success in solving control problems that require
sequential decision-making under uncertainty. However, a continuing challenge in RL is handling
continuous action spaces efficiently. Therefore, the Lunar Lander environment from OpenAI Gym
presents an excellent test case for RL algorithms due to its complex physics-based dynamics and the
need for fine action control when set in continuous mode.

Traditional Q-learning methods, such as Deep Q-Networks (DQN), have proved successful in discrete
environments like Atari games (Mnih et al., 2013). However, their extension to continuous spaces
is non-trivial due to the need for infinite actions. Therefore, Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2019) is chosen because it can efficiently handle deterministic policies, mak-
ing it practical for continuous action spaces. DDPG builds upon popular actor-critic architectures
and utilizes an off-policy learning approach with experience replay and soft target updates to im-
prove learning stability. This report presents the technical implementation of DDPG for solving the
Lunar Lander problem, exploring the effects of hyperparameter tuning and assessing performance
in different configurations. Relevant challenges such as gradient explosions and policy convergence
issues are also highlighted.

2 Technical Background
Deep Reinforcement Learning (DRL) builds upon traditional RL by incorporating deep neural net-
works for function approximation, allowing agents to operate in high-dimensional state and action
spaces. This section covers key concepts, including Deep Q-Networks (DQN), Policy Gradient meth-
ods, Actor-Critic frameworks, and the rationale behind selecting Deep Deterministic Policy Gradient
(DDPG) for solving the Lunar Lander problem.

2.1 Q-Learning, Bellman Equations, and DQN

Q-learning is a fundamental RL algorithm that estimates the optimal action-value function Q∗(s, a)
using the Bellman optimality equation:

Q∗(s, a) = E [r + γ maxa′ Q∗(s′, a′)|s, a]

Where s, a represents the state-action pair, r is the immediate reward, γ ∈ (0, 1] is the discount
factor, and s′, a′ is the next state-action pair. The expectation E[·] is taken over the environment’s
transition dynamics. DQN (Mnih et al., 2013) extends Q-learning to high-dimensional state spaces
by using a deep neural network to approximate the Q-function:

Q(s, a; θ) ≈ Q∗(s, a)

where θ are the network parameters. The loss function for training the Q-network is given by:
L(θ) = E

[
(y −Q(s, a; θ))2]

Where the target Q-value can be represented as:
y = r + γ maxa′ Q(s′, a′; θ−)

and θ− represents the parameters of a target network, which is updated separately from the main Q-
network to improve training stability by reducing divergence. Ultimately, DQN requires discretizing
the action space to compute maxa′ Q(s′, a′), which is computationally challenging in extremely high-
dimensional continuous action spaces. Instead of searching over a discrete set of actions, a policy-

1



based approach can output continuous actions directly, motivating the need for policy gradient
methods.

2.2 Policy Gradient Methods

Policy gradient methods directly optimize the policy πθ(a|s), parameterized by θ, by maximizing
the expected return:

J(θ) = E
[∑T

t=0 γtrt

]
using gradient ascent:

∇θJ(θ) = E
[∑T

t=0∇θ log πθ(at|st)Rt

]
where Rt is the cumulative reward from time t onward. Unlike value-based methods, the policy
gradient approaches allow learning stochastic policies and are suitable for continuous control (Sutton
& Barto, 2018). However, vanilla policy gradients usually struggle with high variance (Fujimoto
et al., 2018). A common solution is to introduce a value function (critic) to guide policy updates,
leading to Actor-Critic methods. These algorithms reduce high variance by combining policy-based
and value-based approaches. The actor (πθ(s)) selects actions, while the critic (Qϕ(s, a)) evaluates
them. The critic is usually trained using Temporal Difference (TD) learning:

yt = rt + γQϕ(st+1, πθ(st+1))

and the actor is updated via deterministic policy gradient:
∇θJ ≈ E [∇θπθ(s)∇aQϕ(s, a)|a = πθ(s)]

Fortunately, this framework can be further extended to consider deep neural networks, making it
well-suited for continuous action spaces.

2.3 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2019) extends Deterministic Policy
Gradient (DPG) (Silver et al., 2014) with deep neural networks, allowing for efficient learning in high-
dimensional continuous action spaces. Unlike vanilla Actor-Critic methods, DDPG stabilizes training
using experience replay and target networks, drawing similarities to DQN. Experience Replay is
a training cache that stores past transitions (s, a, r, s′) to break correlation between consecutive
samples. Target networks further improve stability by using separate parameters θ−, which are
updated gradually to reduce variance in learning:

θ− ← τθ + (1− τ)θ−

where τ ≪ 1 controls update speed.

The DDPG algorithm follows a structured approach, using an actor-critic architecture and experi-
ence replay to efficiently learn in continuous action spaces. However, due to it being a deterministic
algorithm, conventional exploration techniques are not suitable. For a detailed step-by-step break-
down, refer to the pseudocode in Lillicrap et al. (2019).

2.4 Exploration Strategies for DDPG

Exploration is a fundamental challenge in RL, particularly in off-policy algorithms like DDPG. Since
the policy learned by DDPG is deterministic, an independent noise process must be introduced to
encourage exploration. The original paper (Lillicrap et al., 2019) proposed an Ornstein-Uhlenbeck
(OU) process, but a simpler alternative is to inject zero-mean Gaussian noise directly into the action
output (Morales, 2020):

ϵt ∼ N(0, σ2)

where ϵt is the noise added at each timestep and σ controls the scale of randomness. The perturbed
action is then computed as:

at = πθ(st) + ϵt

2



Component Lunar Lander Problem Description
State
Space
(S)

s = [x, y, vx, vy, θ, ω, c1, c2] An 8-dimensional vector representing: horizon-
tal and vertical positions, horizontal and verti-
cal velocity, angle and angular velocity, and two
boolean ground contact indicators.

Action
Space
(A)

a = [amain, alateral] Continuous action space where the main engine
throttle is controlled via amain ∈ [−1, 1], and the
lateral boosters via alateral ∈ [−1, 1].

Transition
Dynamics

Physics-based simulation The lander follows Newtonian mechanics, influ-
enced by thrust, gravity, and collisions. Excessive
impact forces can cause termination.

Reward
Function
(R(s, a))

R = Rlanding + Rdistance + Rfuel + Rcrash (+) Reward for moving toward the landing pad;
(−) Penalty for moving away.
(+) 100 points for a successful landing
(−) 100 points for a crash.
(+) 10 points per leg-ground contact.
(−) 0.3 points per main engine activation.
- Landing outside the pad is allowed.
- Infinite fuel enables multiple attempts.

Episode
Termination

Defined by crash, out-of-bounds, or sta-
bility conditions

The episode ends if:
- the lander crashes,
- moves out of bounds, or
- remains immobile for an extended period.

Environmental
Parameters

Gravity, wind effects, turbulence Adjustable stochastic parameters such as wind
power and turbulence influence agent dynamics.
Note these are maintained at the default provided
values.

Table 1: Lunar Lander Problem Components

This latter method provides a simpler implementation by eliminating the need to tune additional
parameters such as the mean reversion rate and proves effective in high-dimensional spaces, making
it particularly well-suited for DDPG, which operates in continuous action domains.

3 Problem Definitions

The Lunar Lander environment, which is a part of OpenAI Gym, presents a solid benchmark prob-
lem. This case simulates the challenge of controlling a spacecraft to land safely on a designated
pad. The following section details the problem dynamics, action and observation spaces, and reward
structure.

3.1 Environment Description

The environment consists of a physics-based trajectory optimization task where an agent must
control a lander’s thrusters to achieve a smooth and precise landing on a designated pad while min-
imizing velocity and excessive movement (Klimov, 2016; Brockman et al., 2016). The environment
incorporates realistic physics, including gravity, velocity, angular momentum, and thrust forces,
making it a challenging RL problem. Although fuel is unlimited, optimal policies must successfully
land with minimal thruster use. This work focuses on the continuous action space, where thrusters
allow smooth adjustments for precise landing control. As indicated by Klimov (2016), the problem
is solved when an average score ≥ 200 over 100 consecutive runs is achieved. The key components of
the environment, such as termination conditions and reward structures, are summarized in Table 1.

3.2 Overcoming Critical Challenges

Continuous control requires fine-grained thruster adjustments, making policy learning much more
difficult than in discrete settings. Additionally, the reward structure is sparse, providing meaningful
feedback only on successful or failed landings. This delayed feedback complicates credit assignment
since early actions can significantly influence the outcomes. Therefore, a focus on long-term strategy
optimization is crucial. Lastly, the deterministic state-action space increases the complexity of explo-
ration, requiring an effective balance between exploration and exploitation strategies. To overcome
these difficulties, the DDPG algorithm is implemented. DDPG is inherently suited for continuous
control tasks (see Section 2.3), making it an appropriate choice for tackling the challenges presented
by the Lunar Lander environment.

3



Hyperparameter Defaults Search Range

Discount Factor (γ) 0.99 [0.90, 0.99]
Soft Target Update (τ) 0.001 [0.0001, 0.01]
Batch Size (b) 32 {32, 64, 128}
Update Frequency (nf ) 1 {1, 2, 3, 4, 5}
Buffer Size (et) 100,000 -
Noise ratio (ϵs) 0.1 -
Total Episodes (nep) 1,000 -

Table 2: Hyperparameter Optimization Vari-
able Ranges

Parameter Actor Critic

Input Dimension 8 (state) 10 (state + action)
Hidden Layers 2 2
Neurons per Layer 256 256
Activation (Hidden) ReLU ReLU
Activation (Output) Tanh Linear
Optimizer Adam Adam
Learning Rate 10−4 10−4

Output Dimension 2 (action) 1 (Q-value)

Table 3: Neural Network Hyperparameters for
Actor and Critic Networks

4 Methodology
This section outlines the implementation of the DDPG algorithm for solving a continuous action
space. A description of the training and evaluation procedure, neural network architectures, and
the hyperparameter optimization approach is detailed.

4.1 Training and Evaluation Process

The training and evaluation pipeline follows a structured approach to ensure stability and repro-
ducibility. The process is outlined as follows:

• A baseline model is first trained using default hyperparameters, inspired by prior research (Lilli-
crap et al., 2019). The default configuration is presented in Table 2.

• Training performance is monitored and logged at each step by measuring cumulative rewards and
the loss functions of both the actor and critic networks for each consecutive episode.

• Every 10 episodes, the trained model is evaluated using a deterministic policy (a greedy strategy
with no noise injection). Each evaluation consists of 100 simulations, including a final evaluation
after the last training episode.

• Training was conducted for 1000 episodes, each with a maximum duration of 1000 timesteps. The
average wall-clock training time per run is approximately 1.0 hours on a 4-core CPU (Lightning.AI
infrastructure).

• After a baseline evaluation, the same training and evaluation process is repeated for 20 additional
trials using the Optuna hyperparameter optimization framework (Akiba et al., 2019).

4.2 Hyperparameter Considerations

Training of a robust RL agent is generally highly sensitive to hyperparameters, thus a systematic
tuning strategy is required. Therefore, Bayesian optimization via Optuna is applied to identify the
optimal values for key parameters. This method is conventionally more efficient that that of either
structured grid or random search approaches (Akiba et al., 2019) as it accounts for interaction ef-
fects. Ideally, such an optimization would include all attributes such as replay buffer characteristics,
exploration noise, episode duration, and function approximation details. However, to ensure com-
putational efficiency, this study focuses on four key DDPG parameters known to impact outcomes.
The Discount Factor impacts the effects of long-term versus short-term rewards which can greatly
vary depending on sparsity. Soft Target Update impacts how quickly the target model changes thus
effecting the corresponding gradient flow. Batch Size considers the trade-off between learning sta-
bility and computational cost. Finally, Parameter Update Frequency considers the number of steps
before any soft network updates are applied. The parameter defaults and hyperparameter search
spaces are summarized in Table 4. A total of 20 unique optimization trials were conducted, where
each configuration was evaluated based on the average cumulative reward over the final training
episodes.

4



(a) Default Learning Curves for (Left) Training and (Right) Evaluation

(b) Default Loss Curves for (Left) Critic and (Right) Actor

Figure 1: Training reward and loss progression of DDPG with default hyperparameters. (Top-Left)
The learning curve of the training is presented for 1000 epochs with an exponential smoothing curve
to better visually identify the global trends. (Top-Right) The corresponding evaluation points every
10th epoch is presented, including the mean evaluation and standard deviations. (Bottom-Left) The
Critic losses over the 1000 training epochs. (Bottom-Right) The Actor losses over the 1000 training
epochs.

4.3 Neural Network Architectures

The actor-critic framework in DDPG relies on deep neural networks to approximate the policy and
value functions. The network architectures were designed to efficiently handle the 8-dimensional
state space and 2-dimensional continuous action space while maintaining training stability. Table 3
summarizes the network parameters used in the study and experiments. The actor network outputs
continuous action values normalized between -1 and 1 using the Tanh activation function. The critic
network estimates the Q-value of state-action pairs using a linear activation in the output layer.
Both networks were optimized using the Adam optimizer with the same learning rates. To reduce
instability, gradient clipping in the range [-5, 5] was applied to both networks, as baseline results
showed large gradient magnitudes causing spikes in the loss function. This helped prevent exploding
gradients, ensuring smoother policy updates and stable convergence.

5 Results and Discussion
This section presents the experimental results of training a DDPG agent on the Lunar Lander prob-
lem, following the structure outlined in Section 4. In addition to model evaluation and optimization,
insights into parameter influence, general challenges, and potential future work is highlighted.

The evolution of cumulative rewards over each training episode and the corresponding loss curves are
illustrated in Figure 1. During the early phase (Episodes 0–300), the agent displayed highly unsta-
ble behaviour, with large fluctuations in reward. This instability is likely due to the limited policy
exploration. Since DDPG relies on off-policy learning with a replay buffer, sufficient experience
accumulation is required before effective learning can occur. As training moved into the mid-phase
(Episodes 300–700), the agent developed improved policies, as demonstrated by the increasing trend
in cumulative rewards. However, the variance in rewards remained relatively high. Interestingly, a
noticeable dip in cumulative rewards was observed during this phase. This phenomenon was likely
due to instability in the critic network, which evaluates state-action pairs. Inspection of the loss
curves reveals large spikes and an increasing trend in actor and critic loss instead of the expected de-

5



Figure 2: Top: Training reward progression of DDPG with default and optimized hyperparameters.
(Left) Learning curves over 1000 epochs with exponential smoothing (α = 0.95) for trend identifi-
cation. (Middle) Evaluation points every 10th epoch with smoothing (α = 0.8), excluding standard
deviation for clarity. (Right) Final evaluation (last epoch) box plot comparisons across all trials.
Bottom: Trial Loss curves for (Left) Critic and (Right) Actor

crease. This behaviour implies potential issues in gradient propagation within the neural networks.
Since no gradient clipping or regularization strategies were implemented, the optimization process
may have struggled from inconsistent gradient updates, leading to large performance oscillations. In
the final phase (Episodes 700–1000), the policy tends towards convergence and improved stability,
with rewards routinely approaching the 200-point success threshold. However, the observed oscilla-
tory behaviour suggests that while the agent has learned, it might not have fully converged into an
optimal policy. This reinforces hyperparameter optimization’s need to refine the learning process,
particularly in tuning the soft target update parameter (τ), discount factor (γ), batch size (b), and
update frequencies (nf ) to ensure more stable training dynamics.

The primary optimization objectives were to improve training stability, reduce reward variance, en-
hance sample efficiency, and identify key parameters affecting policy performance. Figure 2 presents
the optimization results across various trials, showing that hyperparameter tuning can improve con-
vergence and stability. As shown in the smoothed reward curves, some policies clearly outperformed
those trained with the default DDPG configuration in specific trials. These optimized agents reached
stable performance more quickly and exhibited reduced variance, as reflected in the final evaluation
box plots. Notably, Trial− 4 and Trial− 15 showed impressive improvements, with the best trials
exceeding 200 cumulative reward points. Furthermore, optimized configurations led to more mono-
tonic reward growth, thus indicating structured and stable learning across the entire training range.
Table 4 summarizes the final collected results, comparing performance over the final epoch, the last

6



Figure 3: Contour maps illustrating the impact of hyperparameter choices and their interactions on
cumulative reward. The colour gradient represents the cumulative reward achieved across different
hyperparameter settings. The white star (⋆) denotes Trial-4, which attained the highest cumulative
reward during the final epoch evaluation

100 epochs, and the entire training process. The results show that hyperparameter optimization
outperformed the default configuration across all metrics. However, the heuristic approach signifi-
cantly outperformed all cases, suggesting that while reinforcement learning (RL) is powerful, it may
not always be the optimal solution in all settings.

Model Hyperparameters Results
γ τ b nf Epoch (1) Epoch (100) Epoch (All)

Default 0.99 0.001 32 1 249.03 ± 56.58 199.59 ± 104.63 44.72 ± 166.15
HypOpt (T-4) 0.985 0.0043 128 4 264.41 ± 23.29 197.03 ± 112.70 −22.84 ± 205.416
HypOpt (T-15) 0.988 0.0038 128 2 245.20 ± 66.42 260.45 ± 46.023 81.43 ± 194.83
Heuristic - - - - 289.72 ± 14.22 - -

Table 4: Hyperparameter Optimization Results Summary and Final Comparison
Despite these improvements, the default configuration performed well. Ultimately, this was to be
expected given that the initial hyperparameters were chosen based on well-established parameter
ranges from prior work (Lillicrap et al. (2019); Mnih et al. (2013); Morales (2020)).

5.1 Parameter Influence Analysis

The relationship between hyperparameters and cumulative rewards was analyzed to assess their
impact on performance. Figure 3 presents contour plots for various interactions of batch size (b),
discount factor (γ), soft update rate (τ), and update frequency (nf ). Globally, higher discount factor
(γ) values (≥ 0.98) generally improve performance and stability by prioritizing long-term rewards.
However, the effect is nonlinear, with localized minima indicating strong interactions with other
hyperparameters, such as batch size. A sharp performance drop is observed beyond γ > 0.99, which is
reasonable, as some degree of short-term guidance is necessary to effectively control complex actions
in a continuous space. The soft update rate (τ) exhibits an optimal range around 0.004-0.005, where
cumulative rewards peak. This suggests that moderate updates strike a balance between stability
and learning efficiency. A τ -value that is too high leads to excessive target network fluctuations,
destabilizing learning, while too low results in slow adaptation and inefficient policy updates. The
observed range aligns with findings from Lillicrap et al. (2019), where maintaining a smoothly
evolving target network reduces variance in Q-value estimation and prevents divergence in off-policy
learning. A batch size of 128 gives the highest rewards. However, as the value lies at the edge
of the tested range, further exploration of larger batch sizes might show further performance gains.
Larger batch sizes generally improve learning stability by providing more accurate gradient estimates,

7



reducing variance in updates. However, too large batches can slow convergence. Update frequencies
between 2 and 4 are associated with high-reward regions, suggesting that moderately spaced updates
enhance stability and performance. Slower updates reduce the risk of propagating noisy gradient
estimates, allowing the policy and value functions to converge more smoothly. Frequent updates,
while potentially accelerating learning, can introduce instability by amplifying errors in the critic
network. These outcomes clearly demonstrate the importance of systematic hyperparameter tuning
to balance stability, efficiency, and convergence speed in reinforcement learning.

5.2 General Challenges

Despite improvements through hyperparameter tuning, several challenges remain. Training deep RL
models remained computationally expensive, with each DDPG agent requiring approximately 1.0
hours for 1000 episodes. The high computational demand was caused by large batch sizes, frequent
network updates, and extended training durations necessary for policy convergence. Gradient-related
instabilities are another concern. While gradient clipping helped reduce fluctuations in critic loss,
instances of vanishing gradients in the actor network were still observed and likely due to the Tanh
activation function. Tanh squashes outputs into [−1, 1] ranges, causing gradients to diminish for
saturated neurons, especially in deeper networks. Applying batch normalization or experimenting
with alternative activation functions like Leaky ReLU could improve gradient flow and network
stability. Despite improvements through hyperparameter tuning, convergence instability was still
observed in trials. One factor contributing to this is Q-value overestimation in the critic network, a
well-known issue in DDPG due to its use of bootstrapping and function approximation (Fujimoto
et al., 2018). Overestimation bias occurs when the critic systematically assigns overly optimistic
Q-values, leading the actor to favour suboptimal policies. This results in erratic learning curves and
policy divergence, even when other hyperparameters are well-tuned.

5.3 Future Work

Several directions for future work could enhance the robustness and efficiency of the following inves-
tigation. A critical area for improvement is exploring alternative algorithms such as Twin Delayed
Deep Deterministic Policy Gradient (TD3), Proximal Policy Optimization (PPO), or Soft Actor-
Critic (SAC). TD3 shrinks Q-value overestimation, SAC enhances exploration via entropy regular-
ization, and PPO provides stable, on-policy optimization. A comparative study of these methods
against DDPG would provide deeper insights into the trade-offs between stability and sample ef-
ficiency in continuous control tasks. TD3 is a natural extension to DDPG, involving only minor
structural modifications. One modification already explored is adjusting the number of update fre-
quencies. The outcomes support the benefits of TD3, which has been shown to greatly outperform
DDPG (Fujimoto et al., 2018). Further tuning of network architectures presents another opportu-
nity for improvement. Investigating deeper networks, alternative activation functions (Leaky ReLU),
and normalization techniques (Batch Normalization) could improve gradient flow and stability. Re-
producibility remains a key concern in reinforcement learning research (Fujimoto et al., 2018). To
address this, future work should incorporate experiments across multiple random seeds with stan-
dardized evaluation metrics to verify the generalizability of the results. Finally, while the current
study systematically explores hyperparameter optimization, the depth of the exploration is likely
too shallow to extract the maximum benefits. The study should be expanded to consider more
parameters related to both DDPG and function approximation architectures.

6 Conclusion
This study implemented and analyzed the DDPG algorithm for solving the Lunar Lander problem
in continuous space. The primary objective was to enable precise thrust control for stable and
efficient landings. Default characteristics led to high variance and instability, but hyperparameter
optimization significantly improved training performance, reducing variance and accelerating con-
vergence in some cases. Despite these improvements, challenges such as high computational cost
and gradient instability remained. These outcomes highlight the importance and necessity of hy-
perparameter tuning in RL. Future work should explore alternative algorithms like TD3 and SAC,

8



Figure 4: Successful environment snap-shots of a Lunar Landing scenario

improved network architectures, and advanced exploration strategies to enhance learning stability
and efficiency. While conventional heuristics perform in this case, the complexity of the real-world
environments cannot always be fully captured through handcrafted control strategies. As such, this
study highlights the effectiveness of deep RL learning for continuous control while emphasizing the
critical role of hyperparameter selection in achieving optimal performance.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:

A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018. URL https://arxiv.org/abs/1802.09477.

Oleg Klimov. Lunarlander-v2 environment for openai gym. https://www.gymlibrary.dev/
environments/box2d/lunar_lander/, 2016. Accessed: 2025-02-15.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.
URL https://arxiv.org/abs/1509.02971.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

M. Morales. Grokking Deep Reinforcement Learning. Manning, Shelter Island, NY, 1st edition, 2020.

David Silver, Guy Lever, Nicolas Manfred Otto Heess, Thomas Degris, Daan Wierstra, and Martin A.
Riedmiller. Deterministic policy gradient algorithms. In International Conference on Machine
Learning, 2014. URL https://api.semanticscholar.org/CorpusID:13928442.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, MA, 2nd edition, 2018.

A Available Repository
All code and supplementary materials used in this research are available in a GitHub repos-
itory. The repository can be accessed at: https://github.gatech.edu/gt-omscs-rldm/
7642RLDMSpring2025kodendaal3 where the latest commit hash is:

9

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1802.09477
https://www.gymlibrary.dev/environments/box2d/lunar_lander/
https://www.gymlibrary.dev/environments/box2d/lunar_lander/
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1312.5602
https://api.semanticscholar.org/CorpusID:13928442
https://github.gatech.edu/gt-omscs-rldm/7642RLDMSpring2025kodendaal3
https://github.gatech.edu/gt-omscs-rldm/7642RLDMSpring2025kodendaal3

