
MDPs, Policy Iteration, Q-Learning and SARSA

Kirsten Odendaal
College of Computing
Georgia Institute of Technology

1 Introduction
Reinforcement learning (RL) provides an effective and practical framework for solving real-world
decision-making problems, such as optimizing traffic intersections and navigating warehouse robots.
These tasks require balancing many conflicting constraints, namely reducing congestion while main-
taining smooth operations or ensuring safe, efficient deliveries. RL achieves this by enabling agents
to learn optimal behaviours through interactions with the environment. This study explores Markov
Decision Process (MDP) models for traffic control and warehouse navigation, applying both plan-
ning methods (Value Iteration, Policy Iteration) and model-free methods (Q-Learning, SARSA). A
detailed analysis and comparison is conducted to investigate the strengths and limitations of each
and also the trade-offs in terms of computational efficiency and learning performance.

2 Technical Background
RL is a computational approach under the artificial intelligence umbrella, where agents learn optimal
behaviours through interaction with an environment. This section outlines the technical foundations
of RL, including MDPs, algorithms, and exploration strategies.

2.1 Markov Decision Processes

MDPs provide the mathematical framework for modelling sequential decision-making in RL. An
MDP is defined by a tuple (S,A,R, P, γ):

• State Space (S): Represents all possible configurations of the environment.
• Action Space (A): Represents all actions available to the agent.
• Reward Function (R(s, a, s′): The immediate reward received after a state-action transition.
• Transition (P (s′|s, a)): Probability of reaching state (s′) from state (s), after action (a).
• Discount Factor (γ): Balances the importance of immediate and future rewards.

MDPs assume the Markov property, meaning the next state depends only on the current state
and action, not the sequence of past states (Sutton & Barto, 2018; Morales, 2020). This critical
assumption allows for computational tractability.

2.2 Reinforcement Learning Algorithms

RL algorithms aim to find an optimal policy (π∗), mapping states to actions that maximize cumu-
lative rewards. These algorithms fall into two categories:

1. Model-Based Algorithms: Require knowledge of the environment’s dynamics to plan optimal
policies. These methods often involve computing state values or policies directly before
execution.

2. Model-Free Algorithms: Learn optimal policies iteratively through interaction without prior
knowledge. They update value functions or policies iteratively based on observed rewards.

Model-Based (Planning) Methods

1. Value Iteration: Computes the optimal policy by iteratively updating state values V (s)
based on the Bellman optimality equation:

V (s)← maxa

∑
s′ P (s′|s, a)[R(s, a, s′) + γV (s′)]

1



After convergence, the policy is extracted by selecting the action that maximizes the ex-
pected value. It serves as a baseline due to its guaranteed convergence for fully-defined
MDPs. (Sutton & Barto, 2018).

2. Policy Iteration: Alternates between Policy Evaluation and Policy Improvement. Policy
Evaluation computes V (s) for a fixed policy π.

Vπ(s) =
∑

a π(a|s)
∑

s′ P (s′|s, a)[R(s, a, s′) + γVπ(s′)]

Policy Improvement updates the policy π(s) to greedily maximize the expected value.

π′(s) = arg maxa

∑
s′ P (s′|s, a)[R(s, a, s′) + γVπ(s′)]

The process repeats until the policy converges to the optimal π∗. Policy iteration often
converges in less policy updates than value iteration, although each iteration usually needs
more computation for policy evaluation (Sutton & Barto, 2018).

Model-Free Methods

1. Q-Learning: An off-policy algorithm that updates the action-value function Q(s, a) using
the maximum estimated future reward, independent of the agent’s current policy:

Q(s, a)← Q(s, a) + α[R+ γmaxa Q(s′, a′)−Q(s, a)]

By learning from exploratory actions while optimizing a greedy policy, Q-Learning converges
to the optimal policy (Sutton & Barto, 2018).

2. SARSA (State-Action-Reward-State-Action): An on-policy algorithm that updates Q(s, a)
using the action actually taken under the current policy:

Q(s, a)← Q(s, a) + α[R+ γQ(s′, a′)−Q(s, a)]

Since SARSA follows the policy being executed, it tends to produce smoother and more
stable policies in stochastic environments (Morales, 2020; Sutton & Barto, 2018).

2.3 Exploration versus Exploitation

RL faces the challenge of balancing exploration (trying new actions) and exploitation (choosing
known optimal actions to maximize reward). The ϵ-greedy with exponential decay method addresses
this by selecting random actions with probability ϵ, which decays exponentially over time to favour
exploitation as learning continues.

ϵt = ϵmin + (ϵ0 − ϵmin) · e−kt

where ϵ0 and ϵmin is the initial and minimum exploration rates and k controls the decay rate. This
approach allows for exploration early in training while gradually shifting toward exploitation as the
agent learns the environment. Implementation was done considering the methodology outlined by
Morales (2020).

3 Problem Definitions
This section defines two simplified problems modelled as Markov Decision Processes: traffic inter-
section control and warehouse robot navigation. These problems give a basis for evaluating the RL
algorithms. The traffic intersection problem explores optimizing traffic light timings to reduce con-
gestion and maintain flow. The warehouse robot navigation problem focuses on enabling autonomous
robots to transport items while avoiding collisions and conserving energy. Table 1 outlines each MDP
problem in further detail.

It should be noted that the environment assumes simplified dynamics, such as no left/right turns,
fixed maximum car movements for traffic intersections, and a grid-world representation with stochas-
tic movement for the warehouse robot. These simplifications are required for manageable computa-
tions but do not completely capture the complexity of real-world scenarios.

2



Component Traffic Intersection Problem Warehouse Robot Problem
State
Space (S)

Encodes the number of cars queued in each direc-
tion (N-S and E-W) and the current traffic light
configuration. (cNS , cEW , l) where:
• cNS : Number of cars queued in N-S direction.
• cEW : Number of cars queued in E-W direc-

tion.
• l: Traffic light status (0 for N-S green, 1 for

E-W green).

Represents the robot’s position in a grid world,
locations of static obstacles, and nearby moving
workers. (x, y, b) where:
• rx, ry : Robot’s coordinates in the grid.
• b: Binary variable for bump status of the

robot: wall, equip., worker, target, step.
• tx, ty : target coordinates in the grid.

Action
Space (A)

• Maintain current light configuration.
• Switch the light configuration.

• Move up, Move down.
• Move left, Move right.

Transition
Dynamics
(P (s′|s, a))

Determined by current light configuration, car ar-
rivals (Poisson process), and cars passing through
the intersection.
• l = 0 for Green N-S, cars pass in that direc-

tion; cars queue in other direction (E-W).

Stochastic transitions due to environ. hazards.
• Probability of deviating intended direction.
• Collisions lead to bouncing back to the previ-

ous state.
• Collisions with workers terminate the episode.

Reward
Function
(R(s, a))

• (+) clear cars from the intersection.
• (−) total car count exceeds critical thresholds.

• (+) delivering a box.
• (−) collisions with objects.
• (−) each step to incentivize efficiency.

Discount
Factor (γ)

Balances trade-offs between immediate and long-
term congestion reduction.

Balances trade-offs between minimized collisions
and optimized deliveries.

Table 1: MDP Components for Traffic Intersection and Warehouse Robot Problems

(a) E1 (b) E2 (c) E3 (d) E4

Figure 1: Traffic experimental results for each metric of interest

4 Methodology
The study systematically evaluates various RL algorithms across the two domain problems. The
experiments conducted are detailed in Table 2. Baseline evaluations establish performance bench-
marks, followed by experiments exploring variations in reward shaping, terminal conditions, and
system parameters. The metrics assessed are chosen to capture task-specific objectives, such as
reducing congestion or maximizing deliveries, and general reinforcement learning goals, like policy
convergence and robustness.

5 Experiments and Results
5.1 Traffic Intersection Analysis

This section explores the traffic problem and how different RL algorithms respond to reward struc-
tures, terminal conditions, and traffic patterns. A summary of the collected results for each experi-
ment can be seen visualized in Figure 1. Learning curve visualizations can be found in Appendix C.

3



Exp. Description Variations Metrics Evaluated
Traffic Intersection

E1 Baseline evaluations using default parameters:
• Penalize number of waiting cars
• Terminate on exceeding directional (M = 20) or total

(N = 30) limits
• ϵ-greedy exponential decay function implemented

• max evals: 100
• episodes: 2000
• max steps: 1000
• gamma: 0.90
• alpha: 0.1
• epsilon: 1.0
• epsilon decay: 0.99
• theta: 1e-10
• rexceed = −50
• rwait = −1 ∗ ctot

1. Average queue
length: Average
amount of cars waiting
at the intersection.

2. Congestion events:
Number of instances in
which the car count
exceeds the total
number of N cars or M
in a single direction.

3. Max clearance time:
maximum continuous
time during which the
the intersection
remains below the
critical thresholds.

E2 Reward shaping for congestion and queue reduction:
• Penalize high congestion
• Reward queue reduction
• Incentivize green light with the largest queued direc-

tion

• rgolight = 10
• rnolight = −5
• rctot<=5 = 50
• rctot<=15 = 25
• rctot<=25 = 10
• rctot>25 = −10

E3 Terminal condition exploration:
• Episode ends on clearance with high reward

• rcleared = 100

E4 Traffic Poisson distribution exploration:
• Uniform distribution
• Highly skewed distribution

• λNS = 3, λEW = 3
• λNS = 5, λEW = 2

Warehouse Robot
E1 Baseline evaluations using default parameters:

• Penalize number of steps per episode
• Reward box delivery
• ϵ-greedy exponential decay function implemented
• Terminate on colliding with a worker
• Probability of successful action is always achieved

• max evals: 100
• episodes: 2000
• max steps: 1000
• gamma: 0.90
• alpha: 0.1
• epsilon: 1.0
• epsilon decay: 0.99
• theta: 1e-10
• rstep = −0.1
• rdeliver = 100

1. Deliveries per
episode: Average
number of boxes
successfully delivered.
an episode.

2. Collision rates:
Number of instances
the robot collides with
obstacles.

3. Worker collision
rates: Number of
instances the robot
causes harm to a
worker.

4. Uninterrupted
operation time:
Longest uninterrupted
duration the robot
functions without any
collision.

E2 Reward shaping for safety and efficiency:
• Penalize collisions with increasing severity
• Penalize extreme distances using manhattan (L1)
• Reward proximity to drop-off

• rwall = −1
• requipment = −5
• rworker = −20
• rman = −0.1 ∗ dL1

E3 Terminal condition exploration:
• Episode ends on delivery or worker impact for: (1)

fixed start-fixed goal, (2) random start-fixed goal, (3)
fixed start-random goal, (4) random start-random goal

• same rewards as E2

E4 Reliability under stochastic actions:
• Random action
• Coin-toss action
• Almost always action
• Deterministic action

• Prandom = 0.1
• P50/50 = 0.5
• P80/20 = 0.8
• Pdeterm. = 1.0

Table 2: Experiment summary for both Traffic and Warehouse Robot problems

Impact of Reward Shaping

Reward shaping improved agent behaviour across all algorithms by encouraging congestion reduc-
tion and intersection clearing. Model-based algorithms (Value Iteration, Policy Iteration) adapted
quickly, resulting in higher cumulative rewards and more efficient traffic flow. These algorithms
consistently prioritized clearing the intersection, as shown by the large increase in time spent be-
low congestion thresholds. Whereas the Model-free algorithms (Q-Learning and SARSA) showed
improved performance under reward shaping, but their learning curves revealed greater variabil-
ity. The tiered reward system gave these agents clearer guidance, balancing short-term rewards
for congestion reduction with long-term goals for sustained flow. Ultimately, reward shaping acted
as a sort-of guide or curriculum, simplifying learning and aligning exploration with desired goals,
particularly for model-free algorithms (Sutton & Barto, 2018). Without reward shaping, agents
struggled to develop consistent policies, often performing strange light-switching phenomena. De-
fault rewards often failed to differentiate between subtle but critical policy decisions. By introducing
structured rewards, the agents are guided toward desirable behaviours, effectively shrinking required
exploration and accelerating learning of the agents.

4



(a) E1 (b) E2 (c) E3 (d) E4

Figure 2: Robot experimental results for each metric of interest

Effect of Terminal Conditions

Introducing terminal conditions, such as ending episodes upon clearing the intersection, revealed
large performance differences. The early termination reduced cumulative rewards, as episodes were
trimmed before reaching their full potential for maximizing returns. Under these constraints, model-
based algorithms excelled in minimizing waiting times and showcasing their ability to prioritize
short-term goals. Meanwhile, model-free algorithms adapted less effectively, although they did show
slight reductions in the number of violations. These observations highlight the advantages and
limitations of treating intersection clearing as a terminal condition. On the one hand, terminal
conditions simplify objectives, allowing agents to focus on immediate tasks like reducing congestion.
On the other hand, they may potentially restrict the optimization of long-term optimization as
policies become overly biased on the resets (Morales, 2020).

Intersection with Varying Traffic Patterns

Experiments with balanced and skewed traffic patterns tested the adaptability of each RL algorithm.
In the uniform traffic case, the lack of natural directional bias made it difficult for agents to prior-
itize actions, resulting in slower convergence and higher average waiting times. This phenomenon
increases the difficulty of learning clear policies. Meanwhile, for the highly skewed traffic distribu-
tion, the strong directional bias overwhelmed agents, particularly model-free ones, leading to skewed
policies that neglected the less busy direction, leading to poor generalization. Additionally, the un-
bounded nature of Poisson arrivals increases this issue, as extreme traffic bursts often overwhelmed
learned strategies of the agents.

5.2 Warehouse Robot Analysis

The warehouse robot problem analyzed only Q-Learning and SARSA algorithms. The section high-
lights key findings into the algorithm performance and adaptability, while presenting challenges
specific to varying reward structures, stochasticity, and terminal conditions. A summary of the

5



collected results for each experiment can be seen visualized in Figure 2. Furthermore, learning curve
visualizations can be found in Appendix C.

Impact of Reward Shaping

Reward shaping influenced agent behaviour by encouraging goal-directed movement and penalizing
collisions. This is clearly evidenced by introducing a Manhattan distance reward, helping to en-
courage movement toward the goal while penalizing collisions with walls, equipment, and workers.
Q-Learning’s off-policy updates allowed for broader exploration, enabling around three deliveries
per episode while also reducing the amount of collisions. SARSA became overly cautious, appear-
ing to prioritize penalty avoidance over goal-reaching. This is due to its on-policy nature, where
incremental updates and penalties are immediately felt during exploration (Sutton & Barto, 2018).
Therefore, the newly shaped rewards highlighted a trade-off: Q-Learning benefited from exploration,
achieving efficiency gains, while SARSA’s cautious updates restricted its ability to explore robust
policies. While the manhattan distance metric showed positive contributions, further reworking of
the function to a more potential-driven function (ψ) could be explored (Russell & Norvig, 2022).

Effect of Terminal Conditions

Both algorithms performed effectively in the Fixed Start & Goal scenario as the deterministic en-
vironment stopped the need for exploration. Both models also showed strong performance in the
Random Start & Fixed Goal case by quickly learning the task. However, when the goal position was
randomized, the algorithms struggled. SARSA frequently timed out due to insufficient exploration,
failing to adapt to the changing goals. Q-Learning had higher collision rates as it struggled with the
enlarged state-action space. Random Start & Goal was the most challenging, where both agents ex-
perienced significant performance degradation due to the substantial expansion of the state-action
space. SARSA’s step-by-step updates struggled to make immediate progress, while Q-Learning’s
strategies were also ineffective. However, given sufficient learning opportunities (more episodes),
model-free methods can still converge to effective policies even in complex environments (see Sec-
tion 6.1). This highlights the importance of balancing adaptability and caution (Morales, 2020).

Reliability in Deterministic vs. Stochastic Settings

Varying stochasticity in the environment showed interesting effects on performance. While both
algorithms made more box deliveries in the deterministic settings, they also showed a significant
increase in time-outs. This suggests that the deterministic environment led models to adopt subop-
timal policies, often resulting in infinite loops, as they consistently executed the same actions cycles
without success (Morales, 2020). Introducing moderate randomness (80/20) slightly decreased deliv-
eries but greatly reduced time-outs by forcing exploration, helping agents escape unproductive cycles
and lowering collisions. However, increasing randomness beyond this threshold proved damaging, as
the models struggled to reliably handle excessive variability. This lead to very poor performance,
highlighting the difficulty to produce optimal policies in overly stochastic environments.

6 Policy Comparisons
Extracted policies from traffic and warehouse experiments show clear distinctions in smoothness,
adaptability, and consistency between model-based and model-free algorithms. Figure 3 visualizes
the policies learned by Value Iteration, Policy Iteration, Q-Learning, and SARSA for the traffic
intersection problem. The model-based algorithms (Value Iteration and Policy Iteration) produce
smooth and consistent policies. This smoothness stems from their direct computation of policies
over the entire MDP (Sutton & Barto, 2018). Q-Learning and SARSA produce noisier, less struc-
tured policies due to their experience-driven Q-value updates. Model-free methods need extensive
exploration and longer training to refine policies, particularly in environments with sparse rewards
or stochastic transitions (Morales, 2020). Terminal states in model-free policies appear as blank
regions, as exploration stops once terminal conditions are reached, whereas model-based algorithms
provide continuity by defining actions in terminal states. Environmental factors, such as traffic

6



(a) Value Iteration (b) Policy Iteration (c) Q-Learning (d) SARSA

Figure 3: Reconstructed policy using learned Q-table for Traffic experiment #2

(a) Q-Learning (b) SARSA

Figure 4: Reconstructed policy using learned Q-table for Robot experiment #2

distributions, shape the policies. Imbalanced traffic flows result in prioritized actions for busier
directions, while uniform distributions produce more evenly distributed patterns.

Figure ?? shows the policies for the warehouse robot problem, demonstrating the navigation strate-
gies learned by Q-Learning and SARSA for various conditions. Each target generates unique policy
distributions influenced by localized rewards and constraints such as obstacles and stochastic devia-
tions. The grid world’s exponential growth of the state-action space shows the challenges of scaling
complexity. Q-Learning’s off-policy method supports broader exploration, allowing for denser pol-
icy coverage, while SARSA’s on-policy updates neglect states not visited under its current policy
(Sutton & Barto, 2018). This gap highlights why SARSA can become overly cautious, especially
with strict terminations or sparse rewards. Therefore, tuning exploration parameters is crucial for
preventing incomplete coverage and balancing efficiency against risk.

6.1 Hyperparameter Optimization

The hyperparameter optimization process revealed important trade-offs between computational ef-
ficiency and training complexity, as summarized in Table 3. The discount factor (γ) showed a
significant impact, where lower values (γ = 0.5) encouraged pursuit of short-term rewards, while
higher values (γ = 0.9) favoured long-term planning (Sutton & Barto, 2018). For the traffic problem,
lower γ globally improved cumulative rewards by prioritizing near-term objectives, suggesting the

7



Traffic Intersection
Parameters γ θ ϵ Eps

Ranges 0.5 0.9 1.00E-02 1.00E-10 0.5 0.99 5000 10000

VI reward 750.7 640.8 562.7 640.8
time 3.1 15.7 6.1 15.7

PI reward 535.4 510.6 362 510.6
time 3.5 17.4 4.7 17.4

Q reward 618.9 365.8 462.2 463 463 510.2
time 9.1 7.3 6.5 8.2 8.2 37.4

S reward 631.4 495.3 614.3 533.6 556.6 552.8
time 5.2 4.0 2.8 4.1 11.3 15.5

Warehouse Robot
Parameters γ θ ϵ Eps

Ranges 0.5 0.9 1.00E-02 1.00E-10 0.5 0.99 5000 10000

Q delivery 2.6 3.1 1.8 2.3 13.2 47.7
time 492.5 442.1 372.8 477.9 1720.4 4384.2

S delivery 2.2 2.1 2.1 2.4 24.5 57.4
time 395.4 413.7 407.7 540.6 2967.1 9314.2

Table 3: Hyperparameter results summary

importance of short-term decision-making in such an environment. Convergence thresholds (θ) for
Value Iteration and Policy Iteration balanced precision and efficiency, with lower θ values (1E− 02)
accelerating convergence but producing less optimal policies. For model-free methods, the exponen-
tial decay factor (ϵ) controls the exploration-exploitation balance. Faster decay (ϵ = 0.5) stabilized
policies quickly, while slower decay (ϵ = 0.99) supported broader exploration, particularly beneficial
in dynamic environments like the warehouse robot problem. The number of training episodes (Eps)
had a massive impact on Q-Learning and SARSA. Extended training (10,000 episodes) dramati-
cally improved performance for the warehouse robot by enabling exploration of sparse state-action
spaces at a consequence of significant computational cost. While obvious for the robot scenario,
such improvements were not observed for the traffic problem. This suggests that further exploration
provided diminishing returns.

Ultimately, model-based algorithms demonstrated faster convergence and efficiency but relied on
complete transition and reward models, making larger problem intractable. Meanwhile, despite
their higher computational demands, model-free methods were essential for exploring and adapting to
environments with incomplete information. These outcomes provide an indication of the importance
of systematic hyperparameter tuning to balance efficiency and effectiveness across diverse problem
domains. This experiment focused on single hyperparameter variations while keeping others fixed
at defaults. Therefore, any potential cross-interactions and their impacts were not explored.

7 Conclusions and Future Work
This study compared model-based (Value Iteration, Policy Iteration) and model-free (Q-Learning,
SARSA) reinforcement learning algorithms to traffic intersection control and warehouse robot navi-
gation. Model-based methods demonstrated quicker convergence and globally consistent policies by
using complete transition and reward models, but proved less scalable for high-dimensional prob-
lems. Model-free methods required more extensive computation and exploration but were critical
for environments with unknown dynamics. This highlighted their adaptability to real-world sce-
narios where perfect models do not exist. In both problems, hyperparameter choices shaped policy
effectiveness, convergence speed, and the balance between short- and long-term objectives. Key pa-
rameters such as the discount factor, convergence thresholds, and exploration decay had noticeable
impacts. For example, shorter horizons benefited near-term traffic optimization, whereas extended
training greatly improved performance in the more complex warehouse setting. These results em-
phasize the importance of systematic hyperparameter tuning and reward design to achieve robust
policies. Looking ahead, advanced exploration strategies and further hyperparameter tuning will be
crucial for handling increased complexity of large-scale traffic systems and collaborative warehouse
tasks.

8



References
M. Morales. Grokking Deep Reinforcement Learning. Manning, Shelter Island, NY, 1st edition, 2020.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson, 4th edition,
2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, MA, 2nd edition, 2018.

A Available Repository
All code and supplementary materials used in this research are available in a GitHub repos-
itory. The repository can be accessed at: https://github.gatech.edu/gt-omscs-rldm/
7642RLDMSpring2025kodendaal3 where the latest commit hash is:

B Problem Environments
Two examples of the graphical environment renderings.

(a) Illustration of the traffic intersection
problem simulation. The light above the
intersection indicates if it is green or red
for North/South traffic, while the light on
the right shows the red or green status for
East/West traffic. Vehicles enter and leave
in accordance to a probability distribution

(b) Depiction of the warehouse robot sim-
ulation. Light gray squares are open areas
on the floor grid, dark gray squares indi-
cate equipment, red squares mark a worker’s
presence, the green circle symbolizes the
robot, and the purple square signifies the tar-
get for box delivery.

C Learning Curves
The learning curves for each experiments is visualized in Figure 6. Considering the amount of
time it took to generate these plots for each case, it would be a shame to exclude them due to
a lack of writing space. As such, for each 10th episode increment, the models are evaluated and
performance metrics (cumulative rewards) are collected and analyzed. Please note that only a single
point evaluation is necessary for the model-based methods .

9

https://github.gatech.edu/gt-omscs-rldm/7642RLDMSpring2025kodendaal3
https://github.gatech.edu/gt-omscs-rldm/7642RLDMSpring2025kodendaal3


(a) Traffic: E1 (b) Traffic: E2

(c) Traffic: E3 (d) Traffic: E4

(e) Robot: E1 (f) Robot: E2

(g) Robot: E3 (h) Robot: E4

Figure 6: Traffic Intersection and Warehouse Robot Experiment Learning Curves

10


