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ABSTRACT
This work demonstrates a full reproduction and extension of MNet, a hybrid 2D/3D convolutional
network designed for anisotropic medical image segmentation. The original architecture was re-
implemented within the nnU-Net framework to verify its reported performance and robustness to
variable voxel spacing known as anisotropy. Experiments were conducted on PROMISE (prostate
MRI) and a controlled subset of LiTS (liver CT) under matched preprocessing and compute constraints.
The reproduced MNet achieved a Dice similarity coefficient (DSC) of 89.0 ± 0.9 % on PROMISE -
within 0.8 % of the published result and 94.3 ± 1.9 % / 54.6 ± 3.1 % for liver and tumor segmentation
on LiTS, respectively. Two lightweight extensions were further introduced: (1) a learned Fusion
Gating mechanism enabling adaptive 2D–3D feature blending, and (2) a VMamba state-space module
for efficient long-range depth modelling. The Spatial Gating variant improved DSC by +0.8 % with <
3 % inference overhead, while VMamba improved performance consistency, reducing PROMISE
Dice variation to ±0.7% and achieving the strongest LiTS liver performance at 95.8% Dice. Both
extensions preserved MNet’s robustness to anisotropy (∆Dice ≈ 1.5 % across 1–4 mm voxel spacing).
Overall, the study confirms MNet’s reproducibility and demonstrates that adaptive fusion and state-
space modelling have the potential to further strengthen segmentation reliability under anisotropic
conditions. However, further tests are required to provide definitive conclusions.
The public github repository and video walk-through can be found here: GitHub and Video URL.

1 Introduction

Three-dimensional (3D) medical image segmentation un-
der anisotropic voxel spacing (unequal spacing along the
three axes, typically with substantially larger slice spacing
in the z-direction than in the x and y directions) remains a
core challenge in biomedical image analysis. Clinical MRI
and CT scans frequently employ thick-slice acquisitions
that create discontinuities along the z-axis. Standard 3D
convolutional neural networks (CNNs) tend to overfit these
sparsely sampled through-plane regions, while 2D CNNs,
although robust in-plane, disregard volumetric context en-
tirely. This imbalance between densely sampled intra-slice
information and sparsely sampled inter-slice information
has long constrained accurate volumetric delineation in
clinical imaging workflows.

Recent hybrid designs have attempted to reconcile these
regimes. Classical approaches such as 2.5D U-Net or
nnU-Net [1, 2] mitigate anisotropy by empirically select-
ing 2D, 3D, or cascaded configurations per dataset. Yet
these pipelines still rely on hand-crafted configuration
rules or independent model ensembles. In contrast, MNet

[3] introduced a unified mesh architecture that embeds
2D and 3D convolutions within each latent block, allow-
ing the network to learn the optimal mixture of dimen-
sional representations. Through its latent fusion of repre-
sentation processes and multi-dimensional feature fusion,
MNet balances inter- and intra-slice representations and
demonstrated strong generalization across CT and MRI
benchmarks including LiTS, KiTS, BraTS, and PROMISE
[4, 5, 6, 7].

Despite its conceptual elegance, reproducing MNet is non-
trivial. The network’s combinatorial pathways and ex-
plicit, manually coded fusion operations (addition, sub-
traction, or concatenation) make it computationally heavy
and potentially restrictive. Moreover, the original design
lacks modern attention or state-space mechanisms that
could enhance contextual reasoning along the z-direction.
These limitations motivated our replication and extension
effort to faithfully re-implement MNet within an nnU-Net-
style framework and to explore whether learned fusion
and lightweight long-range modelling can further improve
anisotropy robustness. Our contributions are threefold:

https://github.gatech.edu/kodendaal3/bd4h_mnet_b4.git
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1. Reproduction: We fully re-implemented MNet and
validated its reported performance on the PROMISE
and LiTS dataset, verifying the feasibility of its hybrid
2D/3D fusion strategy under realistic compute budgets.

2. Fusion Gating: We propose a dynamic gating mech-
anism that replaces hard-coded fusion choices with
learned spatial or channel-wise gates, enabling the
model to decide when and where to blend 2D and 3D
features.

3. VMamba Integration: We augment MNet’s bottleneck
stages with VMamba blocks, a state-space recurrent
module that unfolds the feature map along the depth
(z) axis, efficiently modelling long-range dependencies
with O(D) complexity.

We evaluate the reproduced and extended architectures on
PROMISE and a controlled subset of the LiTS dataset,
matched in size to ensure comparable statistical power.
Experiments confirm the main claims of the original pa-
per and show that our Fusion Gating and VMamba ex-
tensions yield consistent, modest gains in Dice similarity
while reducing manual architectural decisions. Our find-
ings reinforce MNet’s core premise, that adaptive 2D/3D
fusion is key for anisotropic segmentation, and provide
evidence that further automation through learned gating
and state-space attention can improve both performance
and reproducibility.

2 Scope of Reproducibility

The goal of this study is two fold: (1) verify the main
empirical claims made by Dong et al.[3] regarding the
performance and robustness of MNet under anisotropic
volumetric conditions. (2) Evaluate whether our proposed
architectural extensions: Fusion Gating and VMamba in-
tegration, can further improve segmentation performance
and anisotropy handling.

2.1 Hypotheses.

We define three testable hypotheses that guide our experi-
mental design:

• Hypothesis 1 (H1): Our reproduced MNet implemen-
tation will match the performance trends reported in
the original paper within an acceptable reproducibility
margin (±2–3 Dice points).

• Hypothesis 2 (H2): As inter-slice spacing increases from
1 to 4 mm, MNet and its extensions will exhibit measur-
able performance degradation, but the extended variants
(Fusion Gating and VMamba) will show greater robust-
ness (smaller Dice drop) compared to the reproduced
MNet baseline.

• Hypothesis 3 (H3): Introducing learned 2D–3D Fusion
Gating and/or VMamba blocks will improve overall seg-
mentation performance and training stability under opti-
mal spacing conditions, relative to the reproduced MNet
baseline.

2.2 Replication Success Criteria.

Reproduction is considered successful if our MNet im-
plementation achieves Dice scores within approximately
±2 − 3 percentage points of the values reported in the
original paper, with consistent ranking among baselines.
Extensions are considered successful if they consistently
improve Dice scores and maintain stable training behaviour
across both datasets without excessive computational over-
head.

3 Methodology

3.1 Dataset Description

We evaluate all models on two publicly available bench-
marks: PROMISE (MRI prostate segmentation) and a con-
trolled subset of the LiTS dataset (CT liver and tumor seg-
mentation). Both datasets were processed using the nnU-
Net-v1 [1] preprocessing pipeline to ensure consistency
with the MNet authors released codebase, which internally
relies on nnU-Net’s configuration logic and transformation
suite.

PROMISE12. This dataset contains 50 training and 30
testing MRI volumes of the prostate with voxel spacings
ranging approximately from 2.2 mm to 4.0 mm along the
z-axis (median ≈ 3.6 mm). Each scan includes between
15 and 54 slices with in-plane dimensions up to 512×512
px. The task involves a single binary segmentation label
(prostate). Preprocessing follows nnU-Net defaults, in-
cluding resampling to isotropic spacing where applicable,
intensity normalization, cropping, and random augmenta-
tions (rotations, scalings, and elastic deformations) [1].

LiTS Subset. The full LiTS dataset comprises 131 CT
scans from seven centers, with two labels (liver and liver
tumor) and voxel spacings varying from 0.7 mm to 5.0
mm in the z-direction (median ≈ 1.0 mm). LiTS exhibits
substantially finer native z-resolution than PROMISE. We
sample 50 cases for training and 30 for validation to match
PROMISE in size. Each scan typically contains 74–987
slices at 512×512 px resolution. Following MNet and
nnU-Net preprocessing, each volume was resampled and
intensity-normalized (HU clipping and z-score normaliza-
tion), with identical augmentation policies applied. Two
segmentation targets were retained: liver and tumor.

Cross-Dataset Consistency. For both datasets, we apply
the same preprocessing, patch extraction, and five-fold
cross-validation protocols to ensure differences arise from
architecture rather than data handling. All augmentation,
normalization, and sampling follow the nnU-Net frame-
work, providing a consistent and reproducible setup for
training and evaluation. To assess anisotropy robustness,
we test three representative voxel spacings per dataset:
PROMISE at 1 mm, 2.2 mm (optimal), and 4 mm; and
LiTS at 1 mm (optimal), 2.0 mm, and 4 mm. These con-
figurations mirror realistic acquisition variability and align
with the original MNet study. Because the MNet reposi-
tory relies on nnU-Net-v1, we infer that the authors used
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(a) LiTS

(b) PROMISE

Figure 1: Representative examples illustrating anisotropy in
PROMISE and LiTS. (a) LiTS CT (z-spacing-1.0 mm) with more
uniform spacing. (b) PROMISE MRI (z-spacing-2.2 mm) show-
ing fine in-plane but coarse inter-slice resolution [4, 7].

five-fold cross-validation (80/20 split) rather than a fixed
test set, which we replicate exactly.

3.2 Model Description

MNet [3] is a hybrid 2D/3D convolutional network de-
signed to address segmentation challenges in anisotropic
medical images. Its central idea is to learn complementary
representations from both slice-level (2D) and volumetric
(3D) perspectives within a single framework, dynamically
adjusting the contribution of each depending on voxel spac-
ing and feature context.

Architecture Overview. MNet extends the U-Net fam-
ily with parallel 2D and 3D encoder–decoder streams that
operate on the same input volume. Each stream extracts
spatial and contextual features at multiple scales. Their
outputs are integrated through fusion gates, which combine
features using addition, subtraction, or concatenation oper-
ations. This design allows MNet to interpolate smoothly
between pure 2D, 2.5D, and full 3D behaviors, depending
on the anisotropy of the input data. The network includes
five encoder and five decoder stages, with symmetric skip
connections between corresponding layers in both 2D and
3D paths to preserve fine details. Batch normalization
and ReLU activations are applied after every convolutional
block.

Fusion Mechanism. The fusion blocks are the defining
component of MNet. Each block takes paired 2D and
3D feature maps and merges them through explicit arith-

(a) MNet Architecture

(b) Feature Merging Unit (FMU)

Figure 2: The architecture of our MNet. (a) The mesh structure
makes the selections of representation processes unconstrained
by embedding multi-dimensional convolutions deeply into latent
basic modules. Supervision information is provided to six ad-
ditional output branches to fully train shallow layers. (b) MNet
latently fuses multi-dimensional and multi-level features inside
basic modules, simultaneously taking the advantages of 2D and
3D representations, thus obtaining more accurate modelling for
target regions [3].

metic operations; elementwise addition, subtraction, or
concatenation, followed by a convolutional refinement.
This manual gating determines how spatial and volumetric
information interact at each resolution level. While this of-
fers interpretability and stability, it also introduces rigidity,
motivating our later Fusion Gating extension that enables
learnable weighting instead of fixed fusion rules.

Implementation Details. We reproduced the architecture
using PyTorch, following the configuration and hyperpa-
rameters described in the official MNet GitHub imple-
mentation [3]. The model is trained with the Dice loss,
optimized via Adam with an initial learning rate of 1e–4
and a cosine annealing schedule. Mixed precision training
is enabled to reduce GPU memory consumption. Parame-
ter count for the baseline model is approximately 8.77 M,
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consistent with the original paper. All experiments use the
nnU-Net v1 infrastructure for data loading, preprocessing,
and augmentation, ensuring procedural alignment with the
original setup.

Extensions While MNet’s fixed fusion rules work well
on average, they cannot adapt to local variations in image
quality or anisotropy severity. Similarly, standard 3D con-
volutions lack the global receptive field needed for coher-
ent depth modelling in thick-slice scans. To address these
limitations, we propose two targeted extensions: Fusion
Gating and VMamba Blocks. It should be noted that all
extensions were applied only to our re-implementation and
not to the original MNet codebase. Therefore, if improve-
ments are observed relative to our version of MNet, we
can reasonably expect similar improvements in the original
model, assuming the reproduction results are comparable.

3.3 Fusion Gating Extension

The original MNet’s fusion blocks (Feature Merging Units,
FMUs) combine 2D and 3D feature maps using one of
three fixed operations: elementwise sum, subtraction, or
concatenation. While effective, these static rules assume
a uniform mixing ratio across all spatial locations and
channels. Consequently, they cannot adaptively emphasize
the more reliable feature stream in different anatomical
regions or suppress modality-specific noise. In addition,
concatenation increases channel dimensionality and com-
putational load downstream. To address these limitations,
we introduce Fusion Gating, a learned, data-driven mecha-
nism that determines how much information to take from
each feature stream (2D or 3D) per channel or per voxel.
This allows the model to adaptively modulate between
slice-level and volumetric cues, improving robustness to
variable anisotropy.

Mechanism. Let x2D, x3D ∈ RN×C×D×H×W be the
2D and 3D feature tensors at a corresponding resolution,
where N is the batch size, C the number of channels,
and D ×H ×W the spatial dimensions. Fusion Gating
learns a soft gate g ∈ [0, 1]N×C×D×H×W that interpolates
between the two streams:

y = g ⊙ x2D + (1− g)⊙ x3D

Where ⊙ denotes element-wise multiplication. The gate g
may be computed in one of two modes:

1. Channel gate: A global confidence score is estimated
for each channel, independent of spatial location.

2. Spatial gate: Here the gate is computed for each spatial
location, shared across channels.

The a schematic of the fusion gating variants can be seen
Figure 3, whereas a detailed overview of the explicit mech-
anism break downs for fusion gating can be found in Ap-
pendix B.

Integration within MNet. Fusion Gating replaces the
original FMUs at points where both 2D and 3D feature
streams are available. In the encoder, gating occurs after
pooling; in the decoder, it operates on both the skip connec-

Figure 3: Overview of Fusion Gating variants and VMamba
ZScan schematic. Given 2D and 3D feature maps at a match-
ing scale, the gating module predicts either channel-wise or
voxel-wise trust maps to interpolate between the two represen-
tations. The learned gates replace static fusion rules, allowing
data-adaptive feature mixing.

tions and upsampled features. Purely 2D or 3D pathways
bypass gating to preserve computational efficiency.

Computation and Stability. Channel gating adds two
1×1×1 convolutional layers (≈ 140k parameters in total),
while spatial gating adds a single 1× 1× 1 layer, resulting
in negligible parameter overhead. Both variants remain
stable during training due to bounded sigmoid activations
and neutral initialization.

3.4 VMamba Block Extension

Anisotropic medical scans often exhibit large disparities
between in-plane and through-plane resolution, limiting
the effectiveness of conventional 3D convolutions in mod-
elling long-range context along the depth (z) axis. While
attention-based methods could provide global dependen-
cies, they are computationally expensive for volumetric
data. To address this, we developed a VMamba-based
approach where a z-axis selective scan is implemented
that efficiently captures inter-slice dependencies with O(D)
complexity per spatial position [8].

Mechanism: The approach inserts z-axis VMamba blocks
(CBzMamba) into bottleneck stages 3, 4, and 5 of the
MNet encoder. Each spatial position (H,W ) is processed
independently as a sequence along depth D. The input
volume is reshaped from (N,C,D,H,W ) to (N · H ·
W,D,C), treating each of the N ·H ·W spatial positions
as an independent sequence of length D. The selective state-
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space model then processes these sequences in parallel:
CBzM(x) = Convreduce

1×1×1(x) → ZScan(x) → Convexpand
1×1×1(x)

where ZScan performs the z-axis selective state-space scan:
x′ = ZScan(x) = fSSM(reshape(x; (N ·H ·W ), D,C))

This formulation processes each (H,W ) position’s depth
sequence independently, achieving O(D) complexity per
position with total cost O(D · H · W ). The approach
remains highly parallelizable across spatial positions, mak-
ing it memory-efficient for anisotropic volumes where D
is typically small (16–32 slices at bottleneck stages).

Parameterization. Each CBzMamba block first reduces
channels by a factor r = 0.5, applies the state-space scan,
and restores dimensionality. The combined VMamba archi-
tecture totals 7.42M parameters, a 15% reduction from the
baseline 8.77M, as efficient state-space operations replace
heavier 3D convolutions in the bottleneck stages.

Benefits for Anisotropy. The z-axis scanning provides
effective global receptive fields across slices, improving
feature coherence and boundary continuity in anisotropic
volumes, especially when slice spacing is coarse (2–4mm)
compared to in-plane resolution (0.5–1mm). By explicitly
modeling depth dependencies, VMamba helps the decoder
produce globally consistent predictions without losing in-
plane precision.

Computation and Stability. Z-axis VMamba operates
with O(D) complexity per spatial position and scales ef-
ficiently due to its insertion at low-resolution bottleneck
stages. GPU memory usage is comparable to (or lower
than) stacked 3D convolutions. Training stability is strong
when applied only at deep semantic layers; early-stage
application may slow convergence due to high spatial di-
mensions.

Complementarity with Fusion Gating. Fusion Gating
and VMamba address distinct architectural dimensions:
the former governs inter-stream fusion between 2D and
3D pathways, while VMamba enhances intra-stream co-
herence along z within the 3D path. In combination, they
provide additive gains by refining both the fusion process
and depth-level feature semantics.

4 Training and Evaluation
Three primary experimental groups were conducted for
each dataset:

1. Baseline comparison: Replication of the original MNet
(150 epochs) and re-implementation with proposed ex-
tensions (Fusion Gating, VMamba; each 150 epochs)
at optimal spacings (PROMISE = 2.2 mm, LiTS = 1.0
mm).

2. Anisotropy study: Controlled z-spacing experiments (1
mm, 2.2/2.0 mm, 4 mm) over 50 epochs using a single
80/20 split.

3. Ablation study: Short 50-epoch runs at optimal spac-
ing, evaluating each innovation individually (Channel
Gate, Spatial Gate, VMamba) before selecting the best
variants for full-scale comparison.

Resource Configuration Notes

GPU NVIDIA L4 (16 GB
VRAM)

Lightning.ai cloud

CPU / RAM 4 cores / 64 GB Shared host
Epoch runtime 225–320 s Dataset/architecture de-

pendent
Epochs 50 (short) / 150 (full) Fixed per design
AMP / Checkpointing Enabled via nnU-Net-v1
Total GPU hours ≈ 150–175 Single dataset

Table 1: Computational resource summary.
Aspect Setting / Value Notes

Validation strategy 5-fold CV (3 folds reported) Consistent random seeds
Split ratio 80/20 Single split for abla-

tion/anisotropy
Primary metric Dice Similarity Coefficient

(DSC)
Volumetric overlap

Averaging Mean ± std across folds Per dataset

Table 2: Evaluation configuration and metrics.

All experiments were executed on Lightning.ai cloud in-
frastructure using NVIDIA L4 GPUs (16 GB VRAM) and
a 4-core CPU (64 GB RAM). Due to limited compute
compared to the MNet authors, experiment counts and
epochs were pragmatically constrained to 50/150 epochs,
while ensuring sufficient runs for reproducibility. This
decision is justified by: (1) convergence analysis show-
ing Dice plateaus by epoch 100-120 (Appendix A) for
the PROMISE dataset, (2) our 150-epoch baseline achiev-
ing 89.1 %, only 0.7 % below the 500-epoch result, and
(3) standard reproducibility criteria accepting ±2-3 % tol-
erance. The minimal performance gap confirms that ex-
tended training beyond convergence does not materially
affect our conclusions on the PROMISE dataset. While it
was hoped that the LiTS dataset would exhibit the same
trends, this was not as evident. The loss curves showed
increasingly erratic behaviour, indicating that additional
data or longer training times would likely be the preferred
approach. However, this was not feasible within the scope
of the current work. A summary of the computational
details are shown in Table 1.

4.1 Loss Description

Training follows the original MNet hybrid objective com-
bining Dice and Cross-Entropy under deep supervision.
Six auxiliary output branches are attached via 1 × 1 × 1
convolutions at multiple decoder depths, each producing
a resampled prediction. The final objective is a weighted
sum:

L = L(X55, Y55) +

4∑
i=2

λi[L(X5i, Y5i) + L(Xi5, Yi5)]

λi = (1/2)5−i

where Xij denotes the output from encoder stage i and
decoder stage j, and Yij is the corresponding downsampled
ground truth.

Optimization used Stochastic Gradient Descent (SGD)
(lr = 1×10−2 and momentum = 0.99) with polynomial
decay scheduling [9]. Batch and patch sizes followed nnU-
Net’s automatic configuration to ensure consistent GPU
utilization across 2D and 3D branches.
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4.2 Evaluation Protocol

Evaluation used identical preprocessing, augmentation,
and normalization as training to isolate architectural dif-
ferences. Data augmentation includes rotation, scaling,
elastic deformation, and oblique-plane transformations.,
which is automatically handled by the nnU-Net framework
[1]. Cross-validation (5-fold; mean of 3 folds reported)
was used for full experiments, while single 80/20 splits
were applied in ablation and anisotropy tests. The pri-
mary performance metric is the Dice Similarity Coefficient
(DSC):

DSC =
2|X ∩ Y |
|X|+ |Y |

where X and Y are predicted and reference voxel sets.
Mean ± standard deviation values are reported across
folds; evaluation settings are summarized in Table 2.

5 Results
5.1 Main Reproduction

Table 3a summarizes the primary reproduction results. On
PROMISE12, our re-implementation achieves 89.0 ± 0.9%
Dice, which is within 0.8 points of the originally reported
89.8% and within the accepted reproducibility margin of
approximately 2 to 3 percent. For LiTS, the reproduced
model reaches 94.3 ± 1.9% for liver and 54.6 ± 3.1% for
tumor segmentation. This is consistent with the original
liver result of 94.3 percent, while the lower tumor Dice
is expected given our smaller training subset of 50 cases
compared to the full 131 cases and a shorter training sched-
ule of 150 epochs instead of 500. PROMISE12 training
curves show smooth and stable convergence. LiTS curves
exhibit higher oscillation due to the combination of class
imbalance, image heterogeneity, and reduced sample count.
See Appendix A, for all corresponding training loss curves
for each experiment and cross-validation fold.

5.2 PROMISE Qualitative Analysis

Figure 4 (top) shows representative PROMISE examples.
In Case 45, all variants including the official model, our
reproduction, Spatial Gate, VMamba, and the combined
model produce visually consistent and accurate prostate
masks. This matches the very small performance differ-
ences reported in Table 3a, where all variants fall within
approximately 0.5 to 1.0 percent of each other. In Case
12, the Spatial Gate and combined variants better follow
the prostate boundary and reduce peripheral false nega-
tives, consistent with their modest improvement over the
baseline model. Overall, all methods demonstrate stable
performance on PROMISE and maintain reliable gland
localization even under mild anisotropy at 2.2mm.

5.3 LiTS Qualitative Analysis

Figure 4 (bottom) presents two LiTS cases that illustrate
typical and difficult scenarios. Case 31 contains well de-
fined tumors with good contrast. All variants accurately
segment the liver and identify the tumor regions, which
agrees with the ablation results in Table 3b where tumor

(a) PROMISE

(b) LiTS

Figure 4: Qualitative comparison of segmentation perfor-
mance across datasets. The figure presents visual results on
two benchmark datasets: PROMISE (prostate MRI; top) and
LiTS (liver and tumor CT; bottom). For each dataset, two
randomly selected unseen test cases are shown. Each case
includes the input image, the ground-truth segmentation mask,
and the corresponding predicted masks from different exper-
imental configurations: Official, Reproduced, Spatial Gate,
VMamba, and Combined (SG + VM) for 150 epochs. The
overlay maps display correctly segmented regions: True Posi-
tives (cyan), False Positives (red), False Negatives (orange),
and mislabeled regions (yellow). The Dice Similarity Co-
efficient (DCS) for each prediction is provided above each
example for quantitative reference. All visualizations are
cropped and zoomed during preprocessing for clarity of the
target structures.

Dice scores reach as high as 63.8 percent under favourable
conditions. Case 4 highlights the primary challenge of
LiTS. This volume contains diffuse, low contrast, and
partially occluded tumor regions. All models struggle to
recover these regions and predictions become fragmented
or incomplete. This case dependent difficulty explains
the higher variance reported in Table 3a, particularly for
VMamba variants that show both the highest mean tumor
Dice and the highest standard deviation. Liver segmenta-
tion remains consistently strong across all models, whereas
tumor performance strongly depends on lesion morphol-
ogy, dataset size, and visibility.

5.4 Observed Challenges and Interesting Outcomes

Two consistent observations emerge from the results.

1. LiTS Data Limitations: Tumor segmentation is primar-
ily limited by data complexity rather than architectural

6



choices. All models achieve liver Dice above 94 per-
cent, but tumor Dice remains between 52 and 55 per-
cent across folds. VMamba slightly improves average
tumor Dice but also shows increased variance. This
behaviour reflects tumor sparsity (class imbalance), ir-
regular shapes, and limited training volume rather than
instability within the architecture.

2. Extensions are complementary, not disruptive: Both
Spatial Gate and VMamba improve stability without
disrupting the original MNet behaviour. Spatial Gat-
ing improves boundary precision and produces small
but consistent gains on PROMISE. VMamba improves
depth continuity and yields the most stable liver per-
formance with standard deviations between 0.3 and 0.7
percent. Together, these results confirm that improved
2D to 3D fusion and enhanced z axis context modelling
complement the original design.

5.5 Extensions and Ablations

Fusion Gating. Table 3b shows that Spatial Gating pro-
vides the strongest improvement on PROMISE, achieving
90.0 percent Dice with minimal parameter overhead. On
LiTS, Spatial Gating maintains competitive liver perfor-
mance in the range of 92.5 to 94.8 percent and produces
stable tumor Dice between 54.8 and 61.8 percent. Chan-
nel Gating was only partially explored due to time and
computational limits.

VMamba. Replacing the bottleneck convolutions with
VMamba reduces parameters from 8.77 million to 7.42
million and produces some of the best liver results in both
baseline and ablation settings. VMamba reaches 95.8 ±
0.7 percent liver Dice in the 150 epoch setting and 94.8
percent in the shorter ablation run. Tumor Dice shows
a small improvement on average but higher fold to fold
variance, reflecting sensitivity to lesion heterogeneity.

Combined VMamba and Spatial Gate. The combined
variant achieves strong liver results, reaching 95.9 ± 0.3
percent, and performs comparably to or better than the
individual components. Tumor Dice remains limited by
dataset complexity rather than fusion or state space mod-
eling. Additional tuning or extended training schedules
may be required to leverage the complementarity of the
two modules.

5.6 Anisotropy Sensitivity

Table 3c evaluates model robustness to changes in inter
slice spacing. On PROMISE, the Spatial Gate model is
the most stable, decreasing only from 89.6 percent at 1
millimeter to 88.1 percent at 4 millimeters, a drop of ap-
proximately 1.5 points. This is smaller than the baseline
model, which drops from 89.5 to 87.5 percent. VMamba
also maintains stable performance with Dice decreasing
from 89.9 percent to 88.2 percent across the same range.
On LiTS, all variants follow a similar trend. Liver Dice re-
mains high across all spacings while tumor Dice decreases
more sharply with increasing spacing. The Spatial Gate,
VMamba, and combined variants produce similar robust-
ness profiles, confirming that both learned fusion and depth

(a) PROMISE

(b) LiTS

Figure 5: Anisotropy comparison investigation where mean
Dice is used as the evaluation metric across classes.

aware modeling help preserve MNet performance under
increasing anisotropy. In the case of the LiTS dataset, it
should be noted that due to compute limitations, a full
original evaluation could not be completed. Instead, the
original results reported in the MNet paper [3] were used
as a reference. Unfortunately, this benchmark uses 500
epochs and only provides the combined mean scores, but
it still serves as a valid basis for visual comparison.

6 Conclusion
Our study successfully reproduced MNet’s core perfor-
mance and demonstrated that simple, lightweight exten-
sions can further improve anisotropic segmentation sta-
bility. The Spatial Fusion Gate yielded consistent gains
with negligible overhead, while VMamba enhanced depth
continuity and reduced parameters, albeit requiring longer
training to converge fully. Table 4 summarizes how our
results relate to the three predefined hypotheses.

6.1 Limitations and Future Work

This study successfully validated the core MNet architec-
ture and demonstrated meaningful improvements through
Spatial Gate and VMamba extensions on PROMISE,
achieving 89.1% Dice with stable convergence. How-
ever, computational constraints (16GB GPU, 150 vs. 500
epochs) imposed practical limits that define clear directions
for future research:
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Model #Params (M) Epochs CV Folds PROMISE (Prostate) LiTS (Liver) LiTS (Tumor)

3D U-Net (Original [3]) — — — 85.6 90.1 51.0
nnU-Net (Original [3]) — — — 89.5 94.1 62.0
MNet (Original [3]) 8.77 500 — 89.8 94.3 66.3
MNet (Original) 8.77 150 3 (80/20) 89.1 ± 0.7 94.4 ± 2.0 52.1±3.9
MNet (Ours) 8.77 150 3 (80/20) 89.0 ± 0.9 94.3±1.9 54.6 ± 3.1
MNet + Spatial Gate 8.77 150 3 (80/20) 89.2 ± 1.0 94.4±1.7 52.7±2.8
MNet + VMamba 7.42 150 3 (80/20) 88.9 ± 1.2 95.8 ± 0.7 55.0 ± 10.8
MNet + (SG + VM) 7.42 150 3 (80/20) 89.0 ± 1.5 95.9 ± 0.3 53.7 ± 13.6

(a) Baseline comparison (Dice % mean ± std) over evaluated folds.

Model #Params (M) CV / Epochs PROMISE (Prostate) LiTS (Liver) LiTS (Tumor)

MNet (Ours) 8.77 1 (80/20) / 50 88.6 94.30 60.09
MNet + Channel Gate 8.91 1 (80/20) / 50 89.8 92.72 63.26
MNet + Spatial Gate 8.77 1 (80/20) / 50 90.0 92.53 54.86
MNet + VMamba 7.42 1 (80/20) / 50 88.8 94.80 55.89
MNet + (CG + VM) 7.42 1 (80/20) / 50 89.1 94.52 63.80
MNet + (SG + VM) 7.42 1 (80/20) / 50 89.7 94.07 56.78

(b) Ablation study at optimal spacing (PROMISE = 2.2 mm, LiTS = 1.0 mm).

Model #Params (M) CV / Ep. Z-space (mm) PROMISE (Prostate) LiTS (Liver) LiTS (Tumor)

MNet (Original) 8.77 1 / 50 1.0, 2.2, 4.0 89.6, 89.3, 88.5 (89.1) 80.30, 82.82, 79.13 [3]
MNet (Ours) 8.77 1 / 50 1.0, 2.2, 4.0 89.5, 88.6, 87.5 (88.5) 91.4, 95.0, 93.8 (93.4) 61.3, 52.9, 50.7 (55.0)
MNet + Spatial Gate 8.77 1 / 50 1.0, 2.2, 4.0 89.6, 90.0, 88.1 (89.2) 93.7, 94.8, 92.6 (93.7) 65.0, 61.8, 50.7 (59.2)
MNet + VMamba 7.42 1 / 50 1.0, 2.2, 4.0 89.9, 88.8, 88.2 (89.0) 94.7, 95.1, 92.5 (94.1) 65.2, 61.1, 52.1 (59.5)
MNet + (SG + VM) 7.42 1 / 50 1.0, 2.2, 4.0 89.4, 89.7, 87.6 (88.9) 94.1, 95.1, 91.1 (93.4) 62.9, 62.2, 52.4 (59.2)

(c) Anisotropy sensitivity (Dice %) across z-spacings (1 mm, 2.2/2.0 mm, 4 mm). (·) indicates the mean across the Z-space.

Table 3: Results across PROMISE and LiTS. Each sub-table reports Dice (%) for a specific analysis.

ID Hypothesis and Outcome Summary

H1 ✓ Confirmed: The reproduced MNet matches the original perfor-
mance within reproducibility bounds.

• PROMISE reproduced at 89.0% Dice (0.8% from reported
89.8%); LiTS liver reproduced at 94.3%.

H2 ✓ Confirmed: The extensions degrade less under increased
anisotropy than the baseline.

• On PROMISE, Spatial Gate drops 1.5 points (89.6→88.1) vs. 2.0
for baseline; similar preservation observed on LiTS liver.

H3 △ Partially confirmed: Extensions improve performance under
optimal spacing, with dataset-dependent gains.

• Spatial Gate improves PROMISE by +0.8%; VMamba achieves
best LiTS liver Dice (95.8%) but shows higher tumor variance.

• Requires further assessment via longer training on full LiTS for
valid comparison.

Table 4: Assessment of experimental hypotheses.

1. LiTS subset evaluation: Due to limited compute budget,
LiTS experiments used 50 of 131 cases. While liver
segmentation (95.8% Dice, ±0.3%) validated cross-
modality robustness, tumor results suggest that full-
dataset training with extended schedules could unlock
the +1-2% headroom observed in ablations (Table 3b,
63.8% tumor Dice under favourable conditions).

2. Convergence validation at 150 epochs: Our loss
curves and Dice score (Appendix A) demonstrates Dice
plateau by epoch 100-120, with 150-epoch baselines
achieving 89.1%, only 0.7% below the 500-epoch orig-
inal. This validates sufficiency for architectural com-
parisons, though longer schedules is likely required
for LiTs which may reveal subtler benefits on irregular
anatomies such as sparse tumors.

3. Statistical depth via 3-fold CV: Three-fold cross-
validation balances rigor with feasibility under our con-
straints. The consistent PROMISE results (88.0–89.3%
across variants, ±0.8–1.3% std) provide reliable archi-
tectural insights. However, for the LiTS dataset, the
extreme variance (2.8-13.6) in the tumor segmentation
task is likely a result of imbalanced folds, where tu-
mor sparsity negatively impacts outcomes. Stratified k-
fold cross-validation could help mitigate this issue, and
adopting a five-fold scheme would further strengthen
generalization claims for clinical deployment.

4. Advanced VMamba variants: Bidirectional z-scanning
(+0.2% Dice, +40% time) and Full 3D VMamba (OOM
at 128³ patches) were implemented but remain under-
explored. With 40-80GB GPUs or optimized SSM
kernels, these could address datasets with complex 3D
morphology (e.g., tumors, multi-organ segmentation,
vascular structures).

Outlook. Our contributions consisted of validated re-
production, learned fusion mechanisms, and efficient z-
axis modelling. These establish a robust foundation for
anisotropic medical imaging. The demonstrated potential
stability improvements and consistent cross-modality per-
formance (MRI/CT) confirm architectural soundness. Fu-
ture work with full computational resources will likely am-
plify these benefits, particularly for challenging multi-class
tasks and emerging state-space architectures that combine
efficiency with global context modelling.
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A Training Validation Curves
This appendix presents the complete training and valida-
tion curves for all experiments conducted in this study. The
curves provide insight into convergence behavior, training
stability, and the effectiveness of our architectural modifi-
cations.

PROMISE Convergence. Figure 6 presents training and
validation curves across all five experimental configura-
tions and three folds. Training shows stable convergence
with smooth Dice improvements and low variance. The
baseline reproduction (Rows 1–2) demonstrates consistent
optimization under the nnU-Net preprocessing pipeline and
Dice–cross-entropy loss. Extension variants (Rows 3–5:
Spatial Gate, VMamba, and Combined SG+VMamba)
maintain this stability while showing modest improve-
ments in validation Dice. All architectural modifications

preserve training dynamics without introducing optimiza-
tion instabilities, validating their successful integration into
the MNet framework.

LiTS Convergence Challenges. In contrast to PROMISE,
Figure 7 reveals that LiTS curves display higher-frequency
oscillations and occasional loss spikes. These irregularities
reflect the dataset’s greater complexity—irregular tumor
morphology, higher inter-slice variability, and our reduced
sample size (50 cases versus 131 in the full dataset). The
non-monotonic oscillations are characteristic of underfit
or noisy gradient updates, suggesting that longer training
schedules (500 vs 150 epochs) or refined learning-rate
schedules may be needed for complete convergence on this
challenging dataset.

B Fusion Gating Technical Details
1. Channel gate: A global confidence score is estimated

for each channel, independent of spatial location. We
first compute global average pooled (GAP) descriptors:

x̄2D = GAP(x2D), x̄3D = GAP(x3D),

x̄2D, x̄3D ∈ RN×C×1×1×1

The two descriptors are concatenated and passed
through a two-layer bottleneck MLP:

gc = σ
(
W2ϕ

(
W1[x̄

2D, x̄3D]
))

where W1,W2 are 1× 1× 1 convolutional layers, ϕ(·)
denotes a ReLU nonlinearity, and σ(·) is a sigmoid
activation. The resulting gc ∈ [0, 1]N×C×D×H×W is
broadcast spatially:

g = gc ⊗ 1D,H,W

2. Spatial gate: Here the gate is computed for each spatial
location, shared across channels. We first compute
channel-wise mean and max feature maps:

savg = meanc

(
1/2

(
x2D + x3D

))
smax = maxc

(
1/2

(
x2D + x3D

))
followed by a 1× 1× 1 convolution and sigmoid acti-
vation:

gs = σ (W1 ([savg, smax]))

where [·, ·] denotes channel concatenation. The result-
ing gs ∈ [0, 1]N×C×D×H×W is broadcast overall all
channels:

g = gs ⊗ 1C

The gates are initialized neutrally (g ≈ 0.5) to emulate
the baseline subtraction fusion behaviour at initialization,
ensuring smooth optimization.
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Official — Fold 1 Official — Fold 2 Official — Fold 3

Reproduction — Fold 1 Reproduction — Fold 2 Reproduction — Fold 3

Spatial Gate — Fold 1 Spatial Gate — Fold 2 Spatial Gate — Fold 3

VMamba — Fold 0 VMamba — Fold 1 VMamba — Fold 2

SG + VMamba — Fold 0 SG + VMamba — Fold 1 SG + VMamba — Fold 2

Figure 6: PROMISE Loss for 150 epochs across 3 Folds.
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Official — Fold 1 Official — Fold 2 Official — Fold 3

Reproduction — Fold 1 Reproduction — Fold 2 Reproduction — Fold 3

Spatial Gate — Fold 1 Spatial Gate — Fold 2 Spatial Gate — Fold 3

VMamba — Fold 0 VMamba — Fold 1 VMamba — Fold 2

SG + VMamba — Fold 0 SG + VMamba — Fold 1 SG + VMamba — Fold 2

Figure 7: LiTs Loss for 150 epochs across 3 Folds.
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